{"title":"碳气凝胶-亚甲基蓝辅助信号放大电化学感应传感器测定赭曲霉毒素A。","authors":"Min Wei, Wenyang Zhang","doi":"10.1186/s13065-018-0415-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, a novel aptamer-based electrochemical biosensor was developed for the determination of Ochratoxin A (OTA) by using carbon aerogels (CAs) and methylene blue (MB) as signal amplification strategy. CAs was used as carrier to load the abundant of complementary DNA (cDNA), which could enhance the hybridization between CAs-cDNA and aptamer immobilized on the electrode surface, thus provide more double-stranded DNA for MB intercalation. The current of MB on the CAs-cDNA/apt/AuE sensor was twice that on the cDNA/apt/AuE sensor, which indicated that the CAs with high surface area enabled a higher loading of the cDNA and absorbed more MB, thus realized the signal amplification strategy. The optimum experimental conditions including MB incubation time of 15 min, aptamer concentration of 4.0 μmol/L, hybridization time of 2.0 h, and OTA incubation time of 18 min were obtained. The change of peak current was linearly proportional to the OTA concentration in the range of 0.10-10 ng/mL with the actual detection limit of 1.0 × 10<sup>-4</sup> ng/mL. The experimental results showed that the prepared CAs-cDNA/apt/AuE exhibited good specificity, acceptable reproducibility and repeatability. This sensor was applied to detect OTA in the spiked corn samples, and obtained an acceptable average recovery of 89%.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"45"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0415-4","citationCount":"14","resultStr":"{\"title\":\"The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification.\",\"authors\":\"Min Wei, Wenyang Zhang\",\"doi\":\"10.1186/s13065-018-0415-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, a novel aptamer-based electrochemical biosensor was developed for the determination of Ochratoxin A (OTA) by using carbon aerogels (CAs) and methylene blue (MB) as signal amplification strategy. CAs was used as carrier to load the abundant of complementary DNA (cDNA), which could enhance the hybridization between CAs-cDNA and aptamer immobilized on the electrode surface, thus provide more double-stranded DNA for MB intercalation. The current of MB on the CAs-cDNA/apt/AuE sensor was twice that on the cDNA/apt/AuE sensor, which indicated that the CAs with high surface area enabled a higher loading of the cDNA and absorbed more MB, thus realized the signal amplification strategy. The optimum experimental conditions including MB incubation time of 15 min, aptamer concentration of 4.0 μmol/L, hybridization time of 2.0 h, and OTA incubation time of 18 min were obtained. The change of peak current was linearly proportional to the OTA concentration in the range of 0.10-10 ng/mL with the actual detection limit of 1.0 × 10<sup>-4</sup> ng/mL. The experimental results showed that the prepared CAs-cDNA/apt/AuE exhibited good specificity, acceptable reproducibility and repeatability. This sensor was applied to detect OTA in the spiked corn samples, and obtained an acceptable average recovery of 89%.</p>\",\"PeriodicalId\":9842,\"journal\":{\"name\":\"Chemistry Central Journal\",\"volume\":\"12 1\",\"pages\":\"45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13065-018-0415-4\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Central Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13065-018-0415-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0415-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification.
In this work, a novel aptamer-based electrochemical biosensor was developed for the determination of Ochratoxin A (OTA) by using carbon aerogels (CAs) and methylene blue (MB) as signal amplification strategy. CAs was used as carrier to load the abundant of complementary DNA (cDNA), which could enhance the hybridization between CAs-cDNA and aptamer immobilized on the electrode surface, thus provide more double-stranded DNA for MB intercalation. The current of MB on the CAs-cDNA/apt/AuE sensor was twice that on the cDNA/apt/AuE sensor, which indicated that the CAs with high surface area enabled a higher loading of the cDNA and absorbed more MB, thus realized the signal amplification strategy. The optimum experimental conditions including MB incubation time of 15 min, aptamer concentration of 4.0 μmol/L, hybridization time of 2.0 h, and OTA incubation time of 18 min were obtained. The change of peak current was linearly proportional to the OTA concentration in the range of 0.10-10 ng/mL with the actual detection limit of 1.0 × 10-4 ng/mL. The experimental results showed that the prepared CAs-cDNA/apt/AuE exhibited good specificity, acceptable reproducibility and repeatability. This sensor was applied to detect OTA in the spiked corn samples, and obtained an acceptable average recovery of 89%.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry