{"title":"芳基/烷基取代四嗪Diels-Alder反应性的计算模型。","authors":"Dennis Svatunek, Christoph Denk, Hannes Mikula","doi":"10.1007/s00706-017-2110-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>The tetrazine ligation is one of the fastest bioorthogonal ligations and plays a pivotal role in time-critical in vitro and in vivo applications. However, prediction of the reactivity of tetrazines in inverse electron demand Diels-Alder-initiated ligation reactions is not straight-forward. Commonly used tools such as frontier molecular orbital theory only give qualitative and often even wrong results. Applying density functional theory, we have been able to develop a simple computational method for the prediction of the reactivity of aryl/alkyl-substituted tetrazines in inverse electron demand Diels-Alder reactions.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":18766,"journal":{"name":"Monatshefte Fur Chemie","volume":"149 4","pages":"833-837"},"PeriodicalIF":1.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00706-017-2110-x","citationCount":"13","resultStr":"{\"title\":\"A computational model to predict the Diels-Alder reactivity of aryl/alkyl-substituted tetrazines.\",\"authors\":\"Dennis Svatunek, Christoph Denk, Hannes Mikula\",\"doi\":\"10.1007/s00706-017-2110-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>The tetrazine ligation is one of the fastest bioorthogonal ligations and plays a pivotal role in time-critical in vitro and in vivo applications. However, prediction of the reactivity of tetrazines in inverse electron demand Diels-Alder-initiated ligation reactions is not straight-forward. Commonly used tools such as frontier molecular orbital theory only give qualitative and often even wrong results. Applying density functional theory, we have been able to develop a simple computational method for the prediction of the reactivity of aryl/alkyl-substituted tetrazines in inverse electron demand Diels-Alder reactions.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":18766,\"journal\":{\"name\":\"Monatshefte Fur Chemie\",\"volume\":\"149 4\",\"pages\":\"833-837\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00706-017-2110-x\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte Fur Chemie\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00706-017-2110-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte Fur Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00706-017-2110-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A computational model to predict the Diels-Alder reactivity of aryl/alkyl-substituted tetrazines.
Abstract: The tetrazine ligation is one of the fastest bioorthogonal ligations and plays a pivotal role in time-critical in vitro and in vivo applications. However, prediction of the reactivity of tetrazines in inverse electron demand Diels-Alder-initiated ligation reactions is not straight-forward. Commonly used tools such as frontier molecular orbital theory only give qualitative and often even wrong results. Applying density functional theory, we have been able to develop a simple computational method for the prediction of the reactivity of aryl/alkyl-substituted tetrazines in inverse electron demand Diels-Alder reactions.
期刊介绍:
"Monatshefte für Chemie/Chemical Monthly" was originally conceived as an Austrian journal of chemistry. It has evolved into an international journal covering all branches of chemistry. Featuring the most recent advances in research in analytical chemistry, biochemistry, inorganic, medicinal, organic, physical, structural, and theoretical chemistry, Chemical Monthly publishes refereed original papers and a section entitled "Short Communications". Reviews, symposia in print, and issues devoted to special fields will also be considered.