使用基于本体的语义自动预测大数据分析。

Mustafa V Nural, Michael E Cotterell, Hao Peng, Rui Xie, Ping Ma, John A Miller
{"title":"使用基于本体的语义自动预测大数据分析。","authors":"Mustafa V Nural, Michael E Cotterell, Hao Peng, Rui Xie, Ping Ma, John A Miller","doi":"10.29268/stbd.2015.2.2.4","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.</p>","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898823/pdf/nihms886095.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated Predictive Big Data Analytics Using Ontology Based Semantics.\",\"authors\":\"Mustafa V Nural, Michael E Cotterell, Hao Peng, Rui Xie, Ping Ma, John A Miller\",\"doi\":\"10.29268/stbd.2015.2.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.</p>\",\"PeriodicalId\":92219,\"journal\":{\"name\":\"International journal of big data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898823/pdf/nihms886095.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of big data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29268/stbd.2015.2.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of big data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29268/stbd.2015.2.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大数据时代的预测分析正发挥着越来越重要的作用。与建模技术选择、估算程序(或算法)和高效执行相关的问题可能会带来重大挑战。例如,为大数据分析选择适当和最优的模型往往需要仔细调查和大量专业知识,而这些知识可能并不总是随时可用。在本文中,我们建议使用语义技术来帮助数据分析师和数据科学家选择适当的建模技术和构建特定的模型,并说明所选技术和模型的理由。为了正式描述建模技术、模型和结果,我们开发了分析本体(Analytics Ontology),它支持半自动模型选择的推理。SCALATION 框架目前支持 30 多种用于预测性大数据分析的建模技术,我们将其用作评估语义技术使用情况的试验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated Predictive Big Data Analytics Using Ontology Based Semantics.

Automated Predictive Big Data Analytics Using Ontology Based Semantics.

Automated Predictive Big Data Analytics Using Ontology Based Semantics.

Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信