分析注射体积对在可变形几何结构中使用双相溶质输送的膀胱内输送的影响。

IF 0.8 4区 数学 Q4 BIOLOGY
Sean G Smith, Boyce E Griffith, David A Zaharoff
{"title":"分析注射体积对在可变形几何结构中使用双相溶质输送的膀胱内输送的影响。","authors":"Sean G Smith,&nbsp;Boyce E Griffith,&nbsp;David A Zaharoff","doi":"10.1093/imammb/dqy004","DOIUrl":null,"url":null,"abstract":"<p><p>Ailments of the bladder are often treated via intravesical delivery-direct application of therapeutic into the bladder through a catheter. This technique is employed hundreds of thousands of times every year, but protocol development has largely been limited to empirical determination. Furthermore, the numerical analyses of intravesical delivery performed to date have been restricted to static geometries and have not accounted for bladder deformation. This study uses a finite element analysis approach with biphasic solute transport to investigate several parameters pertinent to intravesical delivery including solute concentration, solute transport properties and instillation volume. The volume of instillation was found to have a substantial impact on the exposure of solute to the deeper muscle layers of the bladder, which are typically more difficult to reach. Indeed, increasing the instillation volume from 50-100 ml raised the muscle solute exposure as a percentage of overall bladder exposure from 60-70% with higher levels achieved for larger instillation volumes. Similar increases were not seen for changes in solute concentration or solute transport properties. These results indicate the role that instillation volume may play in targeting particular layers of the bladder during an intravesical delivery.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqy004","citationCount":"3","resultStr":"{\"title\":\"Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry.\",\"authors\":\"Sean G Smith,&nbsp;Boyce E Griffith,&nbsp;David A Zaharoff\",\"doi\":\"10.1093/imammb/dqy004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ailments of the bladder are often treated via intravesical delivery-direct application of therapeutic into the bladder through a catheter. This technique is employed hundreds of thousands of times every year, but protocol development has largely been limited to empirical determination. Furthermore, the numerical analyses of intravesical delivery performed to date have been restricted to static geometries and have not accounted for bladder deformation. This study uses a finite element analysis approach with biphasic solute transport to investigate several parameters pertinent to intravesical delivery including solute concentration, solute transport properties and instillation volume. The volume of instillation was found to have a substantial impact on the exposure of solute to the deeper muscle layers of the bladder, which are typically more difficult to reach. Indeed, increasing the instillation volume from 50-100 ml raised the muscle solute exposure as a percentage of overall bladder exposure from 60-70% with higher levels achieved for larger instillation volumes. Similar increases were not seen for changes in solute concentration or solute transport properties. These results indicate the role that instillation volume may play in targeting particular layers of the bladder during an intravesical delivery.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqy004\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqy004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqy004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

膀胱疾病通常通过膀胱内输注治疗——通过导管将治疗药物直接应用于膀胱。这项技术每年被使用数十万次,但协议的制定在很大程度上仅限于经验确定。此外,迄今为止进行的膀胱内输注的数值分析仅限于静态几何形状,并没有考虑膀胱变形。本研究采用双相溶质输运的有限元分析方法来研究与体内输送有关的几个参数,包括溶质浓度、溶质输运性质和注入体积。研究发现,输注量对溶质暴露于膀胱深层肌肉层有重大影响,而深层肌肉层通常较难到达。事实上,将输注量从50-100毫升增加,肌肉溶质暴露量占膀胱总暴露量的百分比从60-70%提高,输注量越大,肌肉溶质暴露量越高。溶质浓度或溶质输运性质的变化未见类似的增加。这些结果表明,在膀胱内输注过程中,输注量可能对膀胱的特定层起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry.

Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry.

Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry.

Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry.

Ailments of the bladder are often treated via intravesical delivery-direct application of therapeutic into the bladder through a catheter. This technique is employed hundreds of thousands of times every year, but protocol development has largely been limited to empirical determination. Furthermore, the numerical analyses of intravesical delivery performed to date have been restricted to static geometries and have not accounted for bladder deformation. This study uses a finite element analysis approach with biphasic solute transport to investigate several parameters pertinent to intravesical delivery including solute concentration, solute transport properties and instillation volume. The volume of instillation was found to have a substantial impact on the exposure of solute to the deeper muscle layers of the bladder, which are typically more difficult to reach. Indeed, increasing the instillation volume from 50-100 ml raised the muscle solute exposure as a percentage of overall bladder exposure from 60-70% with higher levels achieved for larger instillation volumes. Similar increases were not seen for changes in solute concentration or solute transport properties. These results indicate the role that instillation volume may play in targeting particular layers of the bladder during an intravesical delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Formerly the IMA Journal of Mathematics Applied in Medicine and Biology. Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged. The journal welcomes contributions relevant to any area of the life sciences including: -biomechanics- biophysics- cell biology- developmental biology- ecology and the environment- epidemiology- immunology- infectious diseases- neuroscience- pharmacology- physiology- population biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信