实现无液氦、持久模式 MgB2 MRI 磁体:FBML 经验。

IF 3.7 1区 物理与天体物理 Q2 PHYSICS, APPLIED
Superconductor Science & Technology Pub Date : 2017-01-01 Epub Date: 2017-03-17 DOI:10.1088/1361-6668/aa5fed
Yukikazu Iwasa
{"title":"实现无液氦、持久模式 MgB2 MRI 磁体:FBML 经验。","authors":"Yukikazu Iwasa","doi":"10.1088/1361-6668/aa5fed","DOIUrl":null,"url":null,"abstract":"<p><p>In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB<sub>2</sub> MRI magnets. Before reporting on our MgB<sub>2</sub> magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen-I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for <i>adiabatic</i> HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB<sub>2</sub> magnets, I and II, developed after discovery of MgB<sub>2</sub> in 2000. The SN2-MgB<sub>2</sub> Magnet II-0.5-T/240-mm, SN2-cooled, and operated in persistent mode-was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB<sub>2</sub> \"finger\" MRI magnet for osteoporosis screening-we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB<sub>2</sub> MRI magnets.</p>","PeriodicalId":54440,"journal":{"name":"Superconductor Science & Technology","volume":"30 ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859317/pdf/nihms924746.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards Liquid-Helium-Free, Persistent-Mode MgB<sub>2</sub> MRI Magnets: FBML Experience.\",\"authors\":\"Yukikazu Iwasa\",\"doi\":\"10.1088/1361-6668/aa5fed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB<sub>2</sub> MRI magnets. Before reporting on our MgB<sub>2</sub> magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen-I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for <i>adiabatic</i> HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB<sub>2</sub> magnets, I and II, developed after discovery of MgB<sub>2</sub> in 2000. The SN2-MgB<sub>2</sub> Magnet II-0.5-T/240-mm, SN2-cooled, and operated in persistent mode-was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB<sub>2</sub> \\\"finger\\\" MRI magnet for osteoporosis screening-we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB<sub>2</sub> MRI magnets.</p>\",\"PeriodicalId\":54440,\"journal\":{\"name\":\"Superconductor Science & Technology\",\"volume\":\"30 \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859317/pdf/nihms924746.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/aa5fed\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science & Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6668/aa5fed","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我将介绍麻省理工学院弗朗西斯-比特磁性实验室磁性技术部在不含液氦(LHe)的持久模式 MgB2 MRI 磁体方面的经验。在报告我们的 MgB2 磁体之前,我首先总结了我们在 20 世纪 90 年代末开始的基础工作,即开发在固态低温中冷却的无液氦高温超导体 (HTS) 磁体--我首先讨论了绝热 HTS 磁体的有利特性,特别是固态氮 (SN2) 的有利特性。下一个话题是我们的第一块不含氦气的 SN2-HTS 磁体,我们选择 Bi2223 是因为在 20 世纪 90 年代末,Bi2223 是唯一可用来制造 HTS 磁体的 HTS。然后,我将介绍 2000 年发现 MgB2 后开发的两块 MgB2 磁体 I 和 II。SN2-MgB2磁体II-0.5-T/240-mm,SN2冷却,以持久模式运行--于2016年1月完成。本文的最后一个主要话题是用于骨质疏松症筛查的台式无LHe、持久模式1.5-T/70-mm SN2-MgB2 "手指 "磁共振成像磁体--我们预计将于2017年启动该项目。在结束本文之前,我将介绍我目前对 MgB2 MRI 磁体的挑战和前景的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards Liquid-Helium-Free, Persistent-Mode MgB<sub>2</sub> MRI Magnets: FBML Experience.

Towards Liquid-Helium-Free, Persistent-Mode MgB<sub>2</sub> MRI Magnets: FBML Experience.

Towards Liquid-Helium-Free, Persistent-Mode MgB<sub>2</sub> MRI Magnets: FBML Experience.

Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience.

In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB2 MRI magnets. Before reporting on our MgB2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen-I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB2 magnets, I and II, developed after discovery of MgB2 in 2000. The SN2-MgB2 Magnet II-0.5-T/240-mm, SN2-cooled, and operated in persistent mode-was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB2 "finger" MRI magnet for osteoporosis screening-we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB2 MRI magnets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superconductor Science & Technology
Superconductor Science & Technology 物理-物理:凝聚态物理
CiteScore
6.80
自引率
27.80%
发文量
227
审稿时长
3 months
期刊介绍: Superconductor Science and Technology is a multidisciplinary journal for papers on all aspects of superconductivity. The coverage includes theories of superconductivity, the basic physics of superconductors, the relation of microstructure and growth to superconducting properties, the theory of novel devices, and the fabrication and properties of thin films and devices. It also encompasses the manufacture and properties of conductors, and their application in the construction of magnets and heavy current machines, together with enabling technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信