Ning Kang, Quan Guo, Emel Islamzada, Hongshen Ma, Mark D Scott
{"title":"微流体测定淋巴细胞血管变形能力:细胞内复杂性和早期免疫激活的影响。","authors":"Ning Kang, Quan Guo, Emel Islamzada, Hongshen Ma, Mark D Scott","doi":"10.1039/C7IB00191F","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the critical importance of mechanical (rheological + extrudability) deformability in the vascular flow of lymphocytes, it has been poorly investigated due to the limitations of existing technological tools. Microfluidics analysis of leukocyte deformability offers significant advantages in that it offers high throughput, large sample population and the ability to analyze a heterogeneous population. These advantages are in stark contrast to previous approaches that focused on single cell measurements. Importantly, the flow characteristics of microfluidic devices more closely model vascular deformability in that shear stress is applied forcing leukocyte passage through micropores of designed size. The modeling of vascular flow has been further enhanced by the development of a microfluidic ratchet device that introduced an oscillatory flow. As demonstrated in this study, the microfluidic ratchet device was able to separate human peripheral blood leukocyte subsets (i.e., monocytes and lymphocytes) based on differential deformability profiles. Furthermore, morphologically similar lymphocyte subsets (CD4, CD8 and NK) could also be separated. The subset separation was observed to be largely due to differences in their intracellular complexity (i.e., granule content) with granule-positive T lymphocytes and NK cells being less deformable than granule-negative lymphocytes. Moreover, upon immune activation, deformability of the de-granulated lymphocytes increased consequent to the decrease in cytoplasmic granularity/viscosity. This study for the first time demonstrates that leukocytes subsets have differential deformability profiles and that intracellular granularity/degranulation significantly impacts the lymphocytes' mechanical properties. These findings could be of clinical value as biomarkers of lymphocyte activation state and potential disease processes.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"10 4","pages":"207-217"},"PeriodicalIF":1.4000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C7IB00191F","citationCount":"6","resultStr":"{\"title\":\"Microfluidic determination of lymphocyte vascular deformability: effects of intracellular complexity and early immune activation.\",\"authors\":\"Ning Kang, Quan Guo, Emel Islamzada, Hongshen Ma, Mark D Scott\",\"doi\":\"10.1039/C7IB00191F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the critical importance of mechanical (rheological + extrudability) deformability in the vascular flow of lymphocytes, it has been poorly investigated due to the limitations of existing technological tools. Microfluidics analysis of leukocyte deformability offers significant advantages in that it offers high throughput, large sample population and the ability to analyze a heterogeneous population. These advantages are in stark contrast to previous approaches that focused on single cell measurements. Importantly, the flow characteristics of microfluidic devices more closely model vascular deformability in that shear stress is applied forcing leukocyte passage through micropores of designed size. The modeling of vascular flow has been further enhanced by the development of a microfluidic ratchet device that introduced an oscillatory flow. As demonstrated in this study, the microfluidic ratchet device was able to separate human peripheral blood leukocyte subsets (i.e., monocytes and lymphocytes) based on differential deformability profiles. Furthermore, morphologically similar lymphocyte subsets (CD4, CD8 and NK) could also be separated. The subset separation was observed to be largely due to differences in their intracellular complexity (i.e., granule content) with granule-positive T lymphocytes and NK cells being less deformable than granule-negative lymphocytes. Moreover, upon immune activation, deformability of the de-granulated lymphocytes increased consequent to the decrease in cytoplasmic granularity/viscosity. This study for the first time demonstrates that leukocytes subsets have differential deformability profiles and that intracellular granularity/degranulation significantly impacts the lymphocytes' mechanical properties. These findings could be of clinical value as biomarkers of lymphocyte activation state and potential disease processes.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"10 4\",\"pages\":\"207-217\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C7IB00191F\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1039/C7IB00191F\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/C7IB00191F","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Microfluidic determination of lymphocyte vascular deformability: effects of intracellular complexity and early immune activation.
Despite the critical importance of mechanical (rheological + extrudability) deformability in the vascular flow of lymphocytes, it has been poorly investigated due to the limitations of existing technological tools. Microfluidics analysis of leukocyte deformability offers significant advantages in that it offers high throughput, large sample population and the ability to analyze a heterogeneous population. These advantages are in stark contrast to previous approaches that focused on single cell measurements. Importantly, the flow characteristics of microfluidic devices more closely model vascular deformability in that shear stress is applied forcing leukocyte passage through micropores of designed size. The modeling of vascular flow has been further enhanced by the development of a microfluidic ratchet device that introduced an oscillatory flow. As demonstrated in this study, the microfluidic ratchet device was able to separate human peripheral blood leukocyte subsets (i.e., monocytes and lymphocytes) based on differential deformability profiles. Furthermore, morphologically similar lymphocyte subsets (CD4, CD8 and NK) could also be separated. The subset separation was observed to be largely due to differences in their intracellular complexity (i.e., granule content) with granule-positive T lymphocytes and NK cells being less deformable than granule-negative lymphocytes. Moreover, upon immune activation, deformability of the de-granulated lymphocytes increased consequent to the decrease in cytoplasmic granularity/viscosity. This study for the first time demonstrates that leukocytes subsets have differential deformability profiles and that intracellular granularity/degranulation significantly impacts the lymphocytes' mechanical properties. These findings could be of clinical value as biomarkers of lymphocyte activation state and potential disease processes.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.