rpsftm:一个保秩结构失效时间模型的R包。

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2017-12-04
Annabel Allison, Ian R White, Simon Bond
{"title":"rpsftm:一个保秩结构失效时间模型的R包。","authors":"Annabel Allison,&nbsp;Ian R White,&nbsp;Simon Bond","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment switching in a randomised controlled trial occurs when participants change from their randomised treatment to the other trial treatment during the study. Failure to account for treatment switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999). The method is randomisation based and uses only the randomised treatment group, observed event times, and treatment history in order to estimate a causal treatment effect. The treatment effect, <i>ψ</i>, is estimated by balancing counter-factual event times (that would be observed if no treatment were received) between treatment groups. G-estimation is used to find the value of <i>ψ</i> such that a test statistic <i>Z</i>(<i>ψ</i>) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example, the log rank test statistic. We present an R package that implements the method of rpsftm.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"9 2","pages":"342-353"},"PeriodicalIF":2.3000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858764/pdf/emss-76528.pdf","citationCount":"0","resultStr":"{\"title\":\"rpsftm: An R Package for Rank Preserving Structural Failure Time Models.\",\"authors\":\"Annabel Allison,&nbsp;Ian R White,&nbsp;Simon Bond\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment switching in a randomised controlled trial occurs when participants change from their randomised treatment to the other trial treatment during the study. Failure to account for treatment switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999). The method is randomisation based and uses only the randomised treatment group, observed event times, and treatment history in order to estimate a causal treatment effect. The treatment effect, <i>ψ</i>, is estimated by balancing counter-factual event times (that would be observed if no treatment were received) between treatment groups. G-estimation is used to find the value of <i>ψ</i> such that a test statistic <i>Z</i>(<i>ψ</i>) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example, the log rank test statistic. We present an R package that implements the method of rpsftm.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"9 2\",\"pages\":\"342-353\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2017-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858764/pdf/emss-76528.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在随机对照试验中,当参与者在研究期间从随机治疗转向其他试验治疗时,就会发生治疗转换。未能在分析中考虑治疗转换(即通过执行标准的意向治疗分析)可能导致对治疗疗效的估计有偏倚。保秩结构失效时间模型(RPSFTM)是一种在具有生存结局的试验中用于调整治疗转换的方法。RPSFTM是由Robins和Tsiatis(1991)提出的,并由White等人(1997,1999)发展而来。该方法基于随机化,仅使用随机化的治疗组、观察到的事件时间和治疗历史来估计因果治疗效果。治疗效果ψ是通过平衡治疗组之间的反事实事件时间(如果不接受治疗将观察到的时间)来估计的。g估计用于找到ψ的值,使得检验统计量Z(ψ) = 0。这通常是意向处理分析中使用的测试统计量,例如,日志等级测试统计量。我们提供了一个实现rpsftm方法的R包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

rpsftm: An R Package for Rank Preserving Structural Failure Time Models.

rpsftm: An R Package for Rank Preserving Structural Failure Time Models.

rpsftm: An R Package for Rank Preserving Structural Failure Time Models.

Treatment switching in a randomised controlled trial occurs when participants change from their randomised treatment to the other trial treatment during the study. Failure to account for treatment switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999). The method is randomisation based and uses only the randomised treatment group, observed event times, and treatment history in order to estimate a causal treatment effect. The treatment effect, ψ, is estimated by balancing counter-factual event times (that would be observed if no treatment were received) between treatment groups. G-estimation is used to find the value of ψ such that a test statistic Z(ψ) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example, the log rank test statistic. We present an R package that implements the method of rpsftm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信