Jun-Bin Yin, Ya-Cheng Lu, Ban Feng, Zhen-Yu Wu, Ying-Biao Chen, Ting Zhang, Zhen-Zhen Kou, Ming-Ming Zhang, Han Zhang, Jin-Lian Li, Hui Li, Tao Chen, Yu-Lin Dong, Yun-Qing Li
{"title":"内啡肽-2通过突触前机制抑制大鼠脊髓背角脊髓旁臂投射神经元的活性。","authors":"Jun-Bin Yin, Ya-Cheng Lu, Ban Feng, Zhen-Yu Wu, Ying-Biao Chen, Ting Zhang, Zhen-Zhen Kou, Ming-Ming Zhang, Han Zhang, Jin-Lian Li, Hui Li, Tao Chen, Yu-Lin Dong, Yun-Qing Li","doi":"10.1159/000488275","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Spinal dorsal horn (SDH) is one of the most important regions for analgesia produced by endomorphin-2 (EM2), which has a higher affinity and specificity for the µ-opioid receptor (MOR) than morphine. Many studies have focused on substantia gelatinosa (SG, lamina II) neurons to elucidate the cellular basis for its antinociceptive effects. However, the complicated types and local circuits of interneurons in the SG make it difficult to understand the real effects of EM2. Therefore, in the present study, we examined the effects of EM2 on projection neurons (PNs) in lamina I.</p><p><strong>Methods: </strong>Tracing, immunofluoresence, and immunoelectron methods were used to examine the morphological connections between EM2-immunoreactive (-ir) terminals and PNs. By using in vitro whole cell patch clamp recording technique, we investigated the functional effects of EM2 on PNs.</p><p><strong>Results: </strong>EM2-ir afferent terminals directly contacted PNs projecting to the parabrachial nucleus in lamina I. Their synaptic connections were further confirmed by immunoelectron microscopy, most of which were asymmetric synapses. It was found that EM2 had a strong inhibitory effect on the frequency, but not amplitude, of the spontaneous excitatory postsynaptic current (sEPSC) of the spinoparabrachial PNs in lamina I, which could be reversed by MOR antagonist CTOP. However, their spontaneous inhibitory postsynaptic current (sIPSC) and intrinsic properties were not changed after EM2 application.</p><p><strong>Conclusion: </strong>Applying EM2 to the SDH could produce analgesia through inhibiting the activities of the spinoparabrachial PNs in lamina I by reducing presynaptic neurotransmitters release from the primary afferent terminals.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000488275","citationCount":"5","resultStr":"{\"title\":\"Endomorphin-2 Inhibits the Activity of the Spinoparabrachial Projection Neuron through Presynaptic Mechanisms in the Spinal Dorsal Horn in Rats.\",\"authors\":\"Jun-Bin Yin, Ya-Cheng Lu, Ban Feng, Zhen-Yu Wu, Ying-Biao Chen, Ting Zhang, Zhen-Zhen Kou, Ming-Ming Zhang, Han Zhang, Jin-Lian Li, Hui Li, Tao Chen, Yu-Lin Dong, Yun-Qing Li\",\"doi\":\"10.1159/000488275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Spinal dorsal horn (SDH) is one of the most important regions for analgesia produced by endomorphin-2 (EM2), which has a higher affinity and specificity for the µ-opioid receptor (MOR) than morphine. Many studies have focused on substantia gelatinosa (SG, lamina II) neurons to elucidate the cellular basis for its antinociceptive effects. However, the complicated types and local circuits of interneurons in the SG make it difficult to understand the real effects of EM2. Therefore, in the present study, we examined the effects of EM2 on projection neurons (PNs) in lamina I.</p><p><strong>Methods: </strong>Tracing, immunofluoresence, and immunoelectron methods were used to examine the morphological connections between EM2-immunoreactive (-ir) terminals and PNs. By using in vitro whole cell patch clamp recording technique, we investigated the functional effects of EM2 on PNs.</p><p><strong>Results: </strong>EM2-ir afferent terminals directly contacted PNs projecting to the parabrachial nucleus in lamina I. Their synaptic connections were further confirmed by immunoelectron microscopy, most of which were asymmetric synapses. It was found that EM2 had a strong inhibitory effect on the frequency, but not amplitude, of the spontaneous excitatory postsynaptic current (sEPSC) of the spinoparabrachial PNs in lamina I, which could be reversed by MOR antagonist CTOP. However, their spontaneous inhibitory postsynaptic current (sIPSC) and intrinsic properties were not changed after EM2 application.</p><p><strong>Conclusion: </strong>Applying EM2 to the SDH could produce analgesia through inhibiting the activities of the spinoparabrachial PNs in lamina I by reducing presynaptic neurotransmitters release from the primary afferent terminals.</p>\",\"PeriodicalId\":19171,\"journal\":{\"name\":\"Neurosignals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000488275\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurosignals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000488275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000488275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Endomorphin-2 Inhibits the Activity of the Spinoparabrachial Projection Neuron through Presynaptic Mechanisms in the Spinal Dorsal Horn in Rats.
Background/aims: Spinal dorsal horn (SDH) is one of the most important regions for analgesia produced by endomorphin-2 (EM2), which has a higher affinity and specificity for the µ-opioid receptor (MOR) than morphine. Many studies have focused on substantia gelatinosa (SG, lamina II) neurons to elucidate the cellular basis for its antinociceptive effects. However, the complicated types and local circuits of interneurons in the SG make it difficult to understand the real effects of EM2. Therefore, in the present study, we examined the effects of EM2 on projection neurons (PNs) in lamina I.
Methods: Tracing, immunofluoresence, and immunoelectron methods were used to examine the morphological connections between EM2-immunoreactive (-ir) terminals and PNs. By using in vitro whole cell patch clamp recording technique, we investigated the functional effects of EM2 on PNs.
Results: EM2-ir afferent terminals directly contacted PNs projecting to the parabrachial nucleus in lamina I. Their synaptic connections were further confirmed by immunoelectron microscopy, most of which were asymmetric synapses. It was found that EM2 had a strong inhibitory effect on the frequency, but not amplitude, of the spontaneous excitatory postsynaptic current (sEPSC) of the spinoparabrachial PNs in lamina I, which could be reversed by MOR antagonist CTOP. However, their spontaneous inhibitory postsynaptic current (sIPSC) and intrinsic properties were not changed after EM2 application.
Conclusion: Applying EM2 to the SDH could produce analgesia through inhibiting the activities of the spinoparabrachial PNs in lamina I by reducing presynaptic neurotransmitters release from the primary afferent terminals.
期刊介绍:
Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.