利用深度学习从以自我为中心的图像预测日常活动。

Daniel Castro, Steven Hickson, Vinay Bettadapura, Edison Thomaz, Gregory Abowd, Henrik Christensen, Irfan Essa
{"title":"利用深度学习从以自我为中心的图像预测日常活动。","authors":"Daniel Castro,&nbsp;Steven Hickson,&nbsp;Vinay Bettadapura,&nbsp;Edison Thomaz,&nbsp;Gregory Abowd,&nbsp;Henrik Christensen,&nbsp;Irfan Essa","doi":"10.1145/2802083.2808398","DOIUrl":null,"url":null,"abstract":"<p><p>We present a method to analyze images taken from a passive egocentric wearable camera along with the contextual information, such as time and day of week, to learn and predict everyday activities of an individual. We collected a dataset of 40,103 egocentric images over a 6 month period with 19 activity classes and demonstrate the benefit of state-of-the-art deep learning techniques for learning and predicting daily activities. Classification is conducted using a Convolutional Neural Network (CNN) with a classification method we introduce called a late fusion ensemble. This late fusion ensemble incorporates relevant contextual information and increases our classification accuracy. Our technique achieves an overall accuracy of 83.07% in predicting a person's activity across the 19 activity classes. We also demonstrate some promising results from two additional users by fine-tuning the classifier with one day of training data.</p>","PeriodicalId":92281,"journal":{"name":"Proceedings. International Symposium on Wearable Computers","volume":"2015 ","pages":"75-82"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2802083.2808398","citationCount":"98","resultStr":"{\"title\":\"Predicting Daily Activities From Egocentric Images Using Deep Learning.\",\"authors\":\"Daniel Castro,&nbsp;Steven Hickson,&nbsp;Vinay Bettadapura,&nbsp;Edison Thomaz,&nbsp;Gregory Abowd,&nbsp;Henrik Christensen,&nbsp;Irfan Essa\",\"doi\":\"10.1145/2802083.2808398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a method to analyze images taken from a passive egocentric wearable camera along with the contextual information, such as time and day of week, to learn and predict everyday activities of an individual. We collected a dataset of 40,103 egocentric images over a 6 month period with 19 activity classes and demonstrate the benefit of state-of-the-art deep learning techniques for learning and predicting daily activities. Classification is conducted using a Convolutional Neural Network (CNN) with a classification method we introduce called a late fusion ensemble. This late fusion ensemble incorporates relevant contextual information and increases our classification accuracy. Our technique achieves an overall accuracy of 83.07% in predicting a person's activity across the 19 activity classes. We also demonstrate some promising results from two additional users by fine-tuning the classifier with one day of training data.</p>\",\"PeriodicalId\":92281,\"journal\":{\"name\":\"Proceedings. International Symposium on Wearable Computers\",\"volume\":\"2015 \",\"pages\":\"75-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2802083.2808398\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2802083.2808398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2802083.2808398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

我们提出了一种方法来分析从被动自我中心可穿戴相机拍摄的图像以及上下文信息,如时间和星期几,以学习和预测个人的日常活动。我们在6个月的时间里收集了40,103张自我中心图像的数据集,其中包括19个活动类,并展示了最先进的深度学习技术在学习和预测日常活动方面的好处。使用卷积神经网络(CNN)进行分类,我们引入了一种称为晚期融合集成的分类方法。这种后期融合集成了相关的上下文信息,提高了我们的分类精度。我们的技术在预测一个人在19个活动类别中的活动方面达到了83.07%的总体准确率。我们还通过使用一天的训练数据对分类器进行微调,从另外两个用户那里展示了一些有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Daily Activities From Egocentric Images Using Deep Learning.

We present a method to analyze images taken from a passive egocentric wearable camera along with the contextual information, such as time and day of week, to learn and predict everyday activities of an individual. We collected a dataset of 40,103 egocentric images over a 6 month period with 19 activity classes and demonstrate the benefit of state-of-the-art deep learning techniques for learning and predicting daily activities. Classification is conducted using a Convolutional Neural Network (CNN) with a classification method we introduce called a late fusion ensemble. This late fusion ensemble incorporates relevant contextual information and increases our classification accuracy. Our technique achieves an overall accuracy of 83.07% in predicting a person's activity across the 19 activity classes. We also demonstrate some promising results from two additional users by fine-tuning the classifier with one day of training data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信