{"title":"低温和低温贮藏过程中红细胞表面标志物cd44的变化。","authors":"N G Zemlianskykh, L A Babijchuk","doi":"10.15407/fz62.02.094","DOIUrl":null,"url":null,"abstract":"<p><p>We studied the changes in surface marker CD44 in erythrocytes, cryopreserved under the protection of glycerol and PEG–1500, or stored in hypothermic conditions. It was shown that during hypothermic storage the CD44 characteristics in erythrocyte suspension were unchanged within 10 days. In cryopreserved erythrocytes a reduction in CD44–positive cells and in the level of expression of the surface marker were marked. Using PEG–1500 resulted in more pronounced change in erythrocyte CD44 characteristics after freeze–thawing in comparison with glycerol. Removal of cryoprotectants and the loss of a part of cells during the washing process led to the restoration of the CD44 characteristics in freeze–thawed erythrocytes suspension which successfully survived after the stresses. The results indicate that revealed changes in cryopreserved erythrocytes cover only a part of the cells, and they are associated with the instability of the population of erythrocytes with altered CD44 characteristics wherethrough after the removal of cryoprotectants with concomitant hemolysis of unstable cells the CD44 parameters in erythrocyte suspensions recovered. The mechanisms underlying the changes in the parameters of the surface marker CD44 in freeze–thawed erythrocyte may be related to the disruption of intermolecular interactions in the membrane under the influence of physical and chemical environmental factors, followed by the membrane vesiculation with the inclusion of the CD44 into the vesicles.</p>","PeriodicalId":73031,"journal":{"name":"Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994)","volume":"62 2","pages":"94-102"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CHANGES IN ERYTHROCYTE SURFACE MARKER CD44 DURING HYPOTHERMIC AND LOW TEMPERATURE STORAGE.\",\"authors\":\"N G Zemlianskykh, L A Babijchuk\",\"doi\":\"10.15407/fz62.02.094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We studied the changes in surface marker CD44 in erythrocytes, cryopreserved under the protection of glycerol and PEG–1500, or stored in hypothermic conditions. It was shown that during hypothermic storage the CD44 characteristics in erythrocyte suspension were unchanged within 10 days. In cryopreserved erythrocytes a reduction in CD44–positive cells and in the level of expression of the surface marker were marked. Using PEG–1500 resulted in more pronounced change in erythrocyte CD44 characteristics after freeze–thawing in comparison with glycerol. Removal of cryoprotectants and the loss of a part of cells during the washing process led to the restoration of the CD44 characteristics in freeze–thawed erythrocytes suspension which successfully survived after the stresses. The results indicate that revealed changes in cryopreserved erythrocytes cover only a part of the cells, and they are associated with the instability of the population of erythrocytes with altered CD44 characteristics wherethrough after the removal of cryoprotectants with concomitant hemolysis of unstable cells the CD44 parameters in erythrocyte suspensions recovered. The mechanisms underlying the changes in the parameters of the surface marker CD44 in freeze–thawed erythrocyte may be related to the disruption of intermolecular interactions in the membrane under the influence of physical and chemical environmental factors, followed by the membrane vesiculation with the inclusion of the CD44 into the vesicles.</p>\",\"PeriodicalId\":73031,\"journal\":{\"name\":\"Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994)\",\"volume\":\"62 2\",\"pages\":\"94-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/fz62.02.094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/fz62.02.094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CHANGES IN ERYTHROCYTE SURFACE MARKER CD44 DURING HYPOTHERMIC AND LOW TEMPERATURE STORAGE.
We studied the changes in surface marker CD44 in erythrocytes, cryopreserved under the protection of glycerol and PEG–1500, or stored in hypothermic conditions. It was shown that during hypothermic storage the CD44 characteristics in erythrocyte suspension were unchanged within 10 days. In cryopreserved erythrocytes a reduction in CD44–positive cells and in the level of expression of the surface marker were marked. Using PEG–1500 resulted in more pronounced change in erythrocyte CD44 characteristics after freeze–thawing in comparison with glycerol. Removal of cryoprotectants and the loss of a part of cells during the washing process led to the restoration of the CD44 characteristics in freeze–thawed erythrocytes suspension which successfully survived after the stresses. The results indicate that revealed changes in cryopreserved erythrocytes cover only a part of the cells, and they are associated with the instability of the population of erythrocytes with altered CD44 characteristics wherethrough after the removal of cryoprotectants with concomitant hemolysis of unstable cells the CD44 parameters in erythrocyte suspensions recovered. The mechanisms underlying the changes in the parameters of the surface marker CD44 in freeze–thawed erythrocyte may be related to the disruption of intermolecular interactions in the membrane under the influence of physical and chemical environmental factors, followed by the membrane vesiculation with the inclusion of the CD44 into the vesicles.