基质硬度增强内皮细胞VEGFR-2内化、信号传导和增殖

Convergent science physical oncology Pub Date : 2017-01-01 Epub Date: 2017-11-29 DOI:10.1088/2057-1739/aa9263
Danielle J LaValley, Matthew R Zanotelli, Francois Bordeleau, Wenjun Wang, Samantha C Schwager, Cynthia A Reinhart-King
{"title":"基质硬度增强内皮细胞VEGFR-2内化、信号传导和增殖","authors":"Danielle J LaValley,&nbsp;Matthew R Zanotelli,&nbsp;Francois Bordeleau,&nbsp;Wenjun Wang,&nbsp;Samantha C Schwager,&nbsp;Cynthia A Reinhart-King","doi":"10.1088/2057-1739/aa9263","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial growth factor (VEGF) can mediate endothelial cell migration, proliferation, and angiogenesis. During cancer progression, VEGF production is often increased to stimulate the growth of new blood vessels to supply growing tumors with the additional oxygen and nutrients they require. Extracellular matrix stiffening also occurs during tumor progression, however, the crosstalk between tumor mechanics and VEGF signaling remains poorly understood. Here, we show that matrix stiffness heightens downstream endothelial cell response to VEGF by altering VEGF receptor-2 (VEGFR-2) internalization, and this effect is influenced by cell confluency. In sub-confluent endothelial monolayers, VEGFR-2 levels, but not VEGFR-2 phosphorylation, are influenced by matrix rigidity. Interestingly, more compliant matrices correlated with increased expression and clustering of VEGFR-2; however, stiffer matrices induced increased VEGFR-2 internalization. These effects are most likely due to actin-mediated contractility, as inhibiting ROCK on stiff substrates increased VEGFR-2 clustering and decreased internalization. Additionally, increasing matrix stiffness elevates ERK 1/2 phosphorylation, resulting in increased cell proliferation. Moreover, cells on stiff matrices generate more actin stress fibers than on compliant substrates, and the addition of VEGF stimulates an increase in fiber formation regardless of stiffness. In contrast, once endothelial cells reached confluency, stiffness-enhanced VEGF signaling was no longer observed. Together, these data show a complex effect of VEGF and matrix mechanics on VEGF-induced signaling, receptor dynamics, and cell proliferation that is mediated by cell confluency.</p>","PeriodicalId":91466,"journal":{"name":"Convergent science physical oncology","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2057-1739/aa9263","citationCount":"53","resultStr":"{\"title\":\"Matrix Stiffness Enhances VEGFR-2 Internalization, Signaling, and Proliferation in Endothelial Cells.\",\"authors\":\"Danielle J LaValley,&nbsp;Matthew R Zanotelli,&nbsp;Francois Bordeleau,&nbsp;Wenjun Wang,&nbsp;Samantha C Schwager,&nbsp;Cynthia A Reinhart-King\",\"doi\":\"10.1088/2057-1739/aa9263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular endothelial growth factor (VEGF) can mediate endothelial cell migration, proliferation, and angiogenesis. During cancer progression, VEGF production is often increased to stimulate the growth of new blood vessels to supply growing tumors with the additional oxygen and nutrients they require. Extracellular matrix stiffening also occurs during tumor progression, however, the crosstalk between tumor mechanics and VEGF signaling remains poorly understood. Here, we show that matrix stiffness heightens downstream endothelial cell response to VEGF by altering VEGF receptor-2 (VEGFR-2) internalization, and this effect is influenced by cell confluency. In sub-confluent endothelial monolayers, VEGFR-2 levels, but not VEGFR-2 phosphorylation, are influenced by matrix rigidity. Interestingly, more compliant matrices correlated with increased expression and clustering of VEGFR-2; however, stiffer matrices induced increased VEGFR-2 internalization. These effects are most likely due to actin-mediated contractility, as inhibiting ROCK on stiff substrates increased VEGFR-2 clustering and decreased internalization. Additionally, increasing matrix stiffness elevates ERK 1/2 phosphorylation, resulting in increased cell proliferation. Moreover, cells on stiff matrices generate more actin stress fibers than on compliant substrates, and the addition of VEGF stimulates an increase in fiber formation regardless of stiffness. In contrast, once endothelial cells reached confluency, stiffness-enhanced VEGF signaling was no longer observed. Together, these data show a complex effect of VEGF and matrix mechanics on VEGF-induced signaling, receptor dynamics, and cell proliferation that is mediated by cell confluency.</p>\",\"PeriodicalId\":91466,\"journal\":{\"name\":\"Convergent science physical oncology\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/2057-1739/aa9263\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Convergent science physical oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1739/aa9263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Convergent science physical oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1739/aa9263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

血管内皮生长因子(VEGF)可以介导内皮细胞的迁移、增殖和血管生成。在癌症进展过程中,VEGF的产生通常会增加,以刺激新血管的生长,为生长中的肿瘤提供所需的额外氧气和营养。细胞外基质硬化也发生在肿瘤进展过程中,然而,肿瘤机制和VEGF信号之间的相互作用仍然知之甚少。在这里,我们发现基质刚度通过改变VEGF受体-2 (VEGFR-2)内化来增强下游内皮细胞对VEGF的反应,这种作用受到细胞融合的影响。在亚融合内皮单层中,VEGFR-2水平受基质刚度影响,而VEGFR-2磷酸化不受其影响。有趣的是,更柔顺的基质与VEGFR-2的表达和聚集增加相关;然而,更硬的基质诱导VEGFR-2内化增加。这些影响很可能是由于肌动蛋白介导的收缩性,因为抑制坚硬底物上的ROCK会增加VEGFR-2聚集并减少内化。此外,增加基质硬度会提高ERK 1/2磷酸化,导致细胞增殖增加。此外,坚硬基质上的细胞比柔顺基质上的细胞产生更多的肌动蛋白应力纤维,VEGF的加入刺激了纤维形成的增加,而不管硬度如何。相反,一旦内皮细胞达到融合,僵硬增强的VEGF信号不再被观察到。总之,这些数据显示了VEGF和基质力学对VEGF诱导的信号、受体动力学和由细胞融合介导的细胞增殖的复杂影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Matrix Stiffness Enhances VEGFR-2 Internalization, Signaling, and Proliferation in Endothelial Cells.

Matrix Stiffness Enhances VEGFR-2 Internalization, Signaling, and Proliferation in Endothelial Cells.

Vascular endothelial growth factor (VEGF) can mediate endothelial cell migration, proliferation, and angiogenesis. During cancer progression, VEGF production is often increased to stimulate the growth of new blood vessels to supply growing tumors with the additional oxygen and nutrients they require. Extracellular matrix stiffening also occurs during tumor progression, however, the crosstalk between tumor mechanics and VEGF signaling remains poorly understood. Here, we show that matrix stiffness heightens downstream endothelial cell response to VEGF by altering VEGF receptor-2 (VEGFR-2) internalization, and this effect is influenced by cell confluency. In sub-confluent endothelial monolayers, VEGFR-2 levels, but not VEGFR-2 phosphorylation, are influenced by matrix rigidity. Interestingly, more compliant matrices correlated with increased expression and clustering of VEGFR-2; however, stiffer matrices induced increased VEGFR-2 internalization. These effects are most likely due to actin-mediated contractility, as inhibiting ROCK on stiff substrates increased VEGFR-2 clustering and decreased internalization. Additionally, increasing matrix stiffness elevates ERK 1/2 phosphorylation, resulting in increased cell proliferation. Moreover, cells on stiff matrices generate more actin stress fibers than on compliant substrates, and the addition of VEGF stimulates an increase in fiber formation regardless of stiffness. In contrast, once endothelial cells reached confluency, stiffness-enhanced VEGF signaling was no longer observed. Together, these data show a complex effect of VEGF and matrix mechanics on VEGF-induced signaling, receptor dynamics, and cell proliferation that is mediated by cell confluency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信