Nicole M Scarborough, G M Dilshan P Godaliyadda, Dong Hye Ye, David J Kissick, Shijie Zhang, Justin A Newman, Michael J Sheedlo, Azhad Chowdhury, Robert F Fischetti, Chittaranjan Das, Gregery T Buzzard, Charles A Bouman, Garth J Simpson
{"title":"蛋白质晶体定心的同步加速器x射线衍射动态采样。","authors":"Nicole M Scarborough, G M Dilshan P Godaliyadda, Dong Hye Ye, David J Kissick, Shijie Zhang, Justin A Newman, Michael J Sheedlo, Azhad Chowdhury, Robert F Fischetti, Chittaranjan Das, Gregery T Buzzard, Charles A Bouman, Garth J Simpson","doi":"10.2352/ISSN.2470-1173.2017.17.COIMG-415","DOIUrl":null,"url":null,"abstract":"<p><p>A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.</p>","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"2017 ","pages":"6-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2352/ISSN.2470-1173.2017.17.COIMG-415","citationCount":"1","resultStr":"{\"title\":\"Synchrotron X-Ray Diffraction Dynamic Sampling for Protein Crystal Centering.\",\"authors\":\"Nicole M Scarborough, G M Dilshan P Godaliyadda, Dong Hye Ye, David J Kissick, Shijie Zhang, Justin A Newman, Michael J Sheedlo, Azhad Chowdhury, Robert F Fischetti, Chittaranjan Das, Gregery T Buzzard, Charles A Bouman, Garth J Simpson\",\"doi\":\"10.2352/ISSN.2470-1173.2017.17.COIMG-415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.</p>\",\"PeriodicalId\":73514,\"journal\":{\"name\":\"IS&T International Symposium on Electronic Imaging\",\"volume\":\"2017 \",\"pages\":\"6-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2352/ISSN.2470-1173.2017.17.COIMG-415\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IS&T International Symposium on Electronic Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Synchrotron X-Ray Diffraction Dynamic Sampling for Protein Crystal Centering.
A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.