{"title":"肌肉骨骼系统的内稳态和紊乱。类固醇治疗对肌肉骨骼系统的影响。","authors":"Hirotoshi Tanaka","doi":"CliCa1803402409","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle atrophy occurs when glucocorticoid steroids are administered in pharmacological doses or in Cushing syndrome, and such pathological condition is termed as steroid myopathy. Its molecular mechanism is clarified from the study of the gene expression regulation mechanism mediated by steroid receptors in skeletal muscle, progressing to translational research and also addressing the mechanism by which steroids participate in the regulation of whole body energy metabolism via skeletal muscle.</p>","PeriodicalId":10389,"journal":{"name":"Clinical calcium","volume":"28 3","pages":"402-409"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Homeostasis and Disorder of Musculoskeletal System.Influence of steroid therapy on muscuoskeletal system.]\",\"authors\":\"Hirotoshi Tanaka\",\"doi\":\"CliCa1803402409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Muscle atrophy occurs when glucocorticoid steroids are administered in pharmacological doses or in Cushing syndrome, and such pathological condition is termed as steroid myopathy. Its molecular mechanism is clarified from the study of the gene expression regulation mechanism mediated by steroid receptors in skeletal muscle, progressing to translational research and also addressing the mechanism by which steroids participate in the regulation of whole body energy metabolism via skeletal muscle.</p>\",\"PeriodicalId\":10389,\"journal\":{\"name\":\"Clinical calcium\",\"volume\":\"28 3\",\"pages\":\"402-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical calcium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/CliCa1803402409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical calcium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/CliCa1803402409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Homeostasis and Disorder of Musculoskeletal System.Influence of steroid therapy on muscuoskeletal system.]
Muscle atrophy occurs when glucocorticoid steroids are administered in pharmacological doses or in Cushing syndrome, and such pathological condition is termed as steroid myopathy. Its molecular mechanism is clarified from the study of the gene expression regulation mechanism mediated by steroid receptors in skeletal muscle, progressing to translational research and also addressing the mechanism by which steroids participate in the regulation of whole body energy metabolism via skeletal muscle.