{"title":"肿瘤患者循环外泌体中的小rna:综述。","authors":"Stefania Bortoluzzi, Federica Lovisa, Enrico Gaffo, Lara Mussolin","doi":"10.3390/ht6040013","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) secreted from many cell types play important roles in intercellular communication, both as paracrine and endocrine factors, as they can circulate in biological fluids, including plasma. Amid EVs, exosomes are actively secreted vesicles that contain proteins, lipids, soluble factors, and nucleic acids, including microRNAs (miRNAs) and other classes of small RNAs (sRNA). miRNAs are prominent post-transcriptional regulators of gene expression and epigenetic silencers of transcription. We concisely review the roles of miRNAs in cell-fate determination and development and their regulatory activity on almost all the processes and pathways controlling tumor formation and progression. Next, we consider the evidence linking exosomes to tumor progression, particularly to the setting-up of permissive pre-metastatic niches. The study of exosomes in patients with different survival and therapy response can inform on the possible correlations between exosomal cargo and disease features. Moreover, the exploration of circulating exosomes as possible sources of non-invasive biomarkers could give new implements for anti-cancer therapy and metastasis prevention. Since the characterization of sRNAs in exosomes of cancer patients sparks opportunities to better understand their roles in cancer, we briefly present current experimental and computational protocols for sRNAs analysis in circulating exosomes by RNA-seq.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht6040013","citationCount":"20","resultStr":"{\"title\":\"Small RNAs in Circulating Exosomes of Cancer Patients: A Minireview.\",\"authors\":\"Stefania Bortoluzzi, Federica Lovisa, Enrico Gaffo, Lara Mussolin\",\"doi\":\"10.3390/ht6040013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) secreted from many cell types play important roles in intercellular communication, both as paracrine and endocrine factors, as they can circulate in biological fluids, including plasma. Amid EVs, exosomes are actively secreted vesicles that contain proteins, lipids, soluble factors, and nucleic acids, including microRNAs (miRNAs) and other classes of small RNAs (sRNA). miRNAs are prominent post-transcriptional regulators of gene expression and epigenetic silencers of transcription. We concisely review the roles of miRNAs in cell-fate determination and development and their regulatory activity on almost all the processes and pathways controlling tumor formation and progression. Next, we consider the evidence linking exosomes to tumor progression, particularly to the setting-up of permissive pre-metastatic niches. The study of exosomes in patients with different survival and therapy response can inform on the possible correlations between exosomal cargo and disease features. Moreover, the exploration of circulating exosomes as possible sources of non-invasive biomarkers could give new implements for anti-cancer therapy and metastasis prevention. Since the characterization of sRNAs in exosomes of cancer patients sparks opportunities to better understand their roles in cancer, we briefly present current experimental and computational protocols for sRNAs analysis in circulating exosomes by RNA-seq.</p>\",\"PeriodicalId\":53433,\"journal\":{\"name\":\"High-Throughput\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/ht6040013\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Throughput\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ht6040013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht6040013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Small RNAs in Circulating Exosomes of Cancer Patients: A Minireview.
Extracellular vesicles (EVs) secreted from many cell types play important roles in intercellular communication, both as paracrine and endocrine factors, as they can circulate in biological fluids, including plasma. Amid EVs, exosomes are actively secreted vesicles that contain proteins, lipids, soluble factors, and nucleic acids, including microRNAs (miRNAs) and other classes of small RNAs (sRNA). miRNAs are prominent post-transcriptional regulators of gene expression and epigenetic silencers of transcription. We concisely review the roles of miRNAs in cell-fate determination and development and their regulatory activity on almost all the processes and pathways controlling tumor formation and progression. Next, we consider the evidence linking exosomes to tumor progression, particularly to the setting-up of permissive pre-metastatic niches. The study of exosomes in patients with different survival and therapy response can inform on the possible correlations between exosomal cargo and disease features. Moreover, the exploration of circulating exosomes as possible sources of non-invasive biomarkers could give new implements for anti-cancer therapy and metastasis prevention. Since the characterization of sRNAs in exosomes of cancer patients sparks opportunities to better understand their roles in cancer, we briefly present current experimental and computational protocols for sRNAs analysis in circulating exosomes by RNA-seq.
High-ThroughputBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays