尿中没食子酸分子印迹聚合物的合成。

Q1 Chemistry
Showkat Ahmad Bhawani, Tham Soon Sen, Mohammad Nasir Mohammad Ibrahim
{"title":"尿中没食子酸分子印迹聚合物的合成。","authors":"Showkat Ahmad Bhawani,&nbsp;Tham Soon Sen,&nbsp;Mohammad Nasir Mohammad Ibrahim","doi":"10.1186/s13065-018-0392-7","DOIUrl":null,"url":null,"abstract":"<p><p>The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0392-7","citationCount":"26","resultStr":"{\"title\":\"Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.\",\"authors\":\"Showkat Ahmad Bhawani,&nbsp;Tham Soon Sen,&nbsp;Mohammad Nasir Mohammad Ibrahim\",\"doi\":\"10.1186/s13065-018-0392-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.</p>\",\"PeriodicalId\":9842,\"journal\":{\"name\":\"Chemistry Central Journal\",\"volume\":\"12 1\",\"pages\":\"19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13065-018-0392-7\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Central Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13065-018-0392-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0392-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 26

摘要

采用沉淀聚合法制备了没食子酸分子印迹聚合物。在合成过程中,模板与单体的相互作用采用非共价方法。聚合过程以没食子酸为模板剂,丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,2,2′-偶氮二异丁腈为引发剂,乙腈为溶剂。利用傅里叶变换红外光谱和扫描电镜对合成的印迹和非印迹聚合物颗粒进行了表征。通过批量结合实验评价合成的聚合物颗粒的再结合效率。高选择性的没食子酸印迹聚合物为MIPI1,其摩尔比为1:4:20,模板:单体:交联剂。与其他印迹和非印迹聚合物相比,MIPI1的结合效率最高(79.50%)。高选择性印迹聚合物已成功地从加标尿液样品中提取了约80%的没食子酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry Central Journal
Chemistry Central Journal 化学-化学综合
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
3.5 months
期刊介绍: BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research. Sections: -Analytical Chemistry -Organic Chemistry -Environmental and Energy Chemistry -Agricultural and Food Chemistry -Inorganic Chemistry -Medicinal Chemistry -Physical Chemistry -Materials and Macromolecular Chemistry -Green and Sustainable Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信