{"title":"稀疏多视图任务集中学习在ASD诊断中的应用。","authors":"Jun Wang, Qian Wang, Shitong Wang, Dinggang Shen","doi":"10.1007/978-3-319-67389-9_19","DOIUrl":null,"url":null,"abstract":"<p><p>It is challenging to derive early diagnosis from neuroimaging data for autism spectrum disorder (ASD). In this work, we propose a novel sparse multi-view task-centralized (Sparse-MVTC) classification method for computer-assisted diagnosis of ASD. In particular, since ASD is known to be age- and sex-related, we partition all subjects into different groups of age/sex, each of which can be treated as a classification task to learn. Meanwhile, we extract multi-view features from functional magnetic resonance imaging to describe the brain connectivity of each subject. This formulates a multi-view multi-task sparse learning problem and it is solved by a novel Sparse-MVTC method. Specifically, we treat each task as a central task and other tasks as the auxiliary ones. We then consider the task-task and view-view relations between the central task and each auxiliary task. We can use this task-centralized strategy for a highly efficient solution. The comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC method can significantly outperform the existing classification methods in ASD diagnosis.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"10541 ","pages":"159-167"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67389-9_19","citationCount":"1","resultStr":"{\"title\":\"Sparse Multi-view Task-Centralized Learning for ASD Diagnosis.\",\"authors\":\"Jun Wang, Qian Wang, Shitong Wang, Dinggang Shen\",\"doi\":\"10.1007/978-3-319-67389-9_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is challenging to derive early diagnosis from neuroimaging data for autism spectrum disorder (ASD). In this work, we propose a novel sparse multi-view task-centralized (Sparse-MVTC) classification method for computer-assisted diagnosis of ASD. In particular, since ASD is known to be age- and sex-related, we partition all subjects into different groups of age/sex, each of which can be treated as a classification task to learn. Meanwhile, we extract multi-view features from functional magnetic resonance imaging to describe the brain connectivity of each subject. This formulates a multi-view multi-task sparse learning problem and it is solved by a novel Sparse-MVTC method. Specifically, we treat each task as a central task and other tasks as the auxiliary ones. We then consider the task-task and view-view relations between the central task and each auxiliary task. We can use this task-centralized strategy for a highly efficient solution. The comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC method can significantly outperform the existing classification methods in ASD diagnosis.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"10541 \",\"pages\":\"159-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-67389-9_19\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-67389-9_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67389-9_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse Multi-view Task-Centralized Learning for ASD Diagnosis.
It is challenging to derive early diagnosis from neuroimaging data for autism spectrum disorder (ASD). In this work, we propose a novel sparse multi-view task-centralized (Sparse-MVTC) classification method for computer-assisted diagnosis of ASD. In particular, since ASD is known to be age- and sex-related, we partition all subjects into different groups of age/sex, each of which can be treated as a classification task to learn. Meanwhile, we extract multi-view features from functional magnetic resonance imaging to describe the brain connectivity of each subject. This formulates a multi-view multi-task sparse learning problem and it is solved by a novel Sparse-MVTC method. Specifically, we treat each task as a central task and other tasks as the auxiliary ones. We then consider the task-task and view-view relations between the central task and each auxiliary task. We can use this task-centralized strategy for a highly efficient solution. The comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC method can significantly outperform the existing classification methods in ASD diagnosis.