Ofosua Adi-Dako, Kwabena Ofori-Kwakye, Mariam El Boakye-Gyasi, Samuel Oppong Bekoe, Samuel Okyem
{"title":"体外评估可可荚果果胶作为载体用于肾上腺皮质功能不全症的氢化可的松慢性给药。","authors":"Ofosua Adi-Dako, Kwabena Ofori-Kwakye, Mariam El Boakye-Gyasi, Samuel Oppong Bekoe, Samuel Okyem","doi":"10.1155/2017/8284025","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the <i>in vitro</i> potential of cocoa pod husk (CPH) pectin as a carrier for chronodelivery of hydrocortisone intended for adrenal insufficiency. FTIR studies found no drug-CPH pectin interactions, and chemometric analysis showed that pure hydrocortisone bears closer similarity to hydrocortisone in hot water soluble pectin (HWSP) than hydrocortisone in citric acid soluble pectin (CASP). CPH pectin-based hydrocortisone matrix tablets (~300 mg) were prepared by direct compression and wet granulation techniques, and the tablet cores were film-coated with a 15% HPMC formulation for timed release, followed by a 12.5% Eudragit® S100 formulation for acid resistance. <i>In vitro</i> drug release studies of the uncoated and coated matrix tablets in simulated gastrointestinal conditions showed that wet granulation tablets exhibit greater retardation of drug release in aqueous medium than directly compressed tablets. CASP showed greater suppression of drug release in aqueous medium than HWSP. Wet granulation HWSP-based matrix tablets coated to a final coat weight gain of ~25% w/w were optimized for chronodelivery of hydrocortisone in the colon. The optimized tablets exhibited a lag phase of ~6 h followed by accelerated drug release in the colonic region and have potential to control night time cortisol levels in patients with adrenal insufficiency.</p>","PeriodicalId":15575,"journal":{"name":"Journal of drug delivery","volume":"2017 ","pages":"8284025"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757137/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Vitro Evaluation of Cocoa Pod Husk Pectin as a Carrier for Chronodelivery of Hydrocortisone Intended for Adrenal Insufficiency.\",\"authors\":\"Ofosua Adi-Dako, Kwabena Ofori-Kwakye, Mariam El Boakye-Gyasi, Samuel Oppong Bekoe, Samuel Okyem\",\"doi\":\"10.1155/2017/8284025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the <i>in vitro</i> potential of cocoa pod husk (CPH) pectin as a carrier for chronodelivery of hydrocortisone intended for adrenal insufficiency. FTIR studies found no drug-CPH pectin interactions, and chemometric analysis showed that pure hydrocortisone bears closer similarity to hydrocortisone in hot water soluble pectin (HWSP) than hydrocortisone in citric acid soluble pectin (CASP). CPH pectin-based hydrocortisone matrix tablets (~300 mg) were prepared by direct compression and wet granulation techniques, and the tablet cores were film-coated with a 15% HPMC formulation for timed release, followed by a 12.5% Eudragit® S100 formulation for acid resistance. <i>In vitro</i> drug release studies of the uncoated and coated matrix tablets in simulated gastrointestinal conditions showed that wet granulation tablets exhibit greater retardation of drug release in aqueous medium than directly compressed tablets. CASP showed greater suppression of drug release in aqueous medium than HWSP. Wet granulation HWSP-based matrix tablets coated to a final coat weight gain of ~25% w/w were optimized for chronodelivery of hydrocortisone in the colon. The optimized tablets exhibited a lag phase of ~6 h followed by accelerated drug release in the colonic region and have potential to control night time cortisol levels in patients with adrenal insufficiency.</p>\",\"PeriodicalId\":15575,\"journal\":{\"name\":\"Journal of drug delivery\",\"volume\":\"2017 \",\"pages\":\"8284025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/8284025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/8284025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
In Vitro Evaluation of Cocoa Pod Husk Pectin as a Carrier for Chronodelivery of Hydrocortisone Intended for Adrenal Insufficiency.
This study evaluated the in vitro potential of cocoa pod husk (CPH) pectin as a carrier for chronodelivery of hydrocortisone intended for adrenal insufficiency. FTIR studies found no drug-CPH pectin interactions, and chemometric analysis showed that pure hydrocortisone bears closer similarity to hydrocortisone in hot water soluble pectin (HWSP) than hydrocortisone in citric acid soluble pectin (CASP). CPH pectin-based hydrocortisone matrix tablets (~300 mg) were prepared by direct compression and wet granulation techniques, and the tablet cores were film-coated with a 15% HPMC formulation for timed release, followed by a 12.5% Eudragit® S100 formulation for acid resistance. In vitro drug release studies of the uncoated and coated matrix tablets in simulated gastrointestinal conditions showed that wet granulation tablets exhibit greater retardation of drug release in aqueous medium than directly compressed tablets. CASP showed greater suppression of drug release in aqueous medium than HWSP. Wet granulation HWSP-based matrix tablets coated to a final coat weight gain of ~25% w/w were optimized for chronodelivery of hydrocortisone in the colon. The optimized tablets exhibited a lag phase of ~6 h followed by accelerated drug release in the colonic region and have potential to control night time cortisol levels in patients with adrenal insufficiency.