语义流畅性数据的语义网络搜索建模。

Jeffrey C Zemla, Joseph L Austerweil
{"title":"语义流畅性数据的语义网络搜索建模。","authors":"Jeffrey C Zemla,&nbsp;Joseph L Austerweil","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Psychologists have used the semantic fluency task for decades to gain insight into the processes and representations underlying memory retrieval. Recent work has suggested that a censored random walk on a semantic network resembles semantic fluency data because it produces optimal foraging. However, fluency data have rich structure beyond being consistent with optimal foraging. Under the assumption that memory can be represented as a semantic network, we test a variety of memory search processes and examine how well these processes capture the richness of fluency data. The search processes we explore vary in the extent they explore the network globally or exploit local clusters, and whether they are strategic. We found that a censored random walk with a priming component best captures the frequency and clustering effects seen in human fluency data.</p>","PeriodicalId":72634,"journal":{"name":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","volume":"2017 ","pages":"3646-3651"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796672/pdf/nihms888346.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling Semantic Fluency Data as Search on a Semantic Network.\",\"authors\":\"Jeffrey C Zemla,&nbsp;Joseph L Austerweil\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psychologists have used the semantic fluency task for decades to gain insight into the processes and representations underlying memory retrieval. Recent work has suggested that a censored random walk on a semantic network resembles semantic fluency data because it produces optimal foraging. However, fluency data have rich structure beyond being consistent with optimal foraging. Under the assumption that memory can be represented as a semantic network, we test a variety of memory search processes and examine how well these processes capture the richness of fluency data. The search processes we explore vary in the extent they explore the network globally or exploit local clusters, and whether they are strategic. We found that a censored random walk with a priming component best captures the frequency and clustering effects seen in human fluency data.</p>\",\"PeriodicalId\":72634,\"journal\":{\"name\":\"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference\",\"volume\":\"2017 \",\"pages\":\"3646-3651\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796672/pdf/nihms888346.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,心理学家一直在使用语义流畅性任务来深入了解记忆提取的过程和表征。最近的研究表明,语义网络上的审查随机漫步类似于语义流畅性数据,因为它产生了最佳的觅食。然而,流畅性数据除了与最优觅食一致外,还具有丰富的结构。在假设记忆可以表示为语义网络的情况下,我们测试了各种记忆搜索过程,并检查了这些过程如何捕获丰富的流畅性数据。我们探索的搜索过程在探索全球网络或利用局部集群的程度上有所不同,以及它们是否具有战略意义。我们发现,带有启动成分的删减随机漫步最能捕捉人类流利度数据中出现的频率和聚类效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling Semantic Fluency Data as Search on a Semantic Network.

Modeling Semantic Fluency Data as Search on a Semantic Network.

Modeling Semantic Fluency Data as Search on a Semantic Network.

Modeling Semantic Fluency Data as Search on a Semantic Network.

Psychologists have used the semantic fluency task for decades to gain insight into the processes and representations underlying memory retrieval. Recent work has suggested that a censored random walk on a semantic network resembles semantic fluency data because it produces optimal foraging. However, fluency data have rich structure beyond being consistent with optimal foraging. Under the assumption that memory can be represented as a semantic network, we test a variety of memory search processes and examine how well these processes capture the richness of fluency data. The search processes we explore vary in the extent they explore the network globally or exploit local clusters, and whether they are strategic. We found that a censored random walk with a priming component best captures the frequency and clustering effects seen in human fluency data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信