{"title":"看似相似的钌(III)候选药物KP1019和NAMI-A具有不同的作用。过去30年我们学到了什么?","authors":"Enzo Alessio, Luigi Messori","doi":"10.1515/9783110470734-011","DOIUrl":null,"url":null,"abstract":"<p><p>The general interest in anticancer metal-based drugs and some encouraging pharmacological results obtained at the beginning of the investigations on innovative Ru-based drugs triggered a lot of attention on NAMI-A and KP1019, the two Ru(III) coordination compounds that are the subject of this review. This great attention led to a considerable amount of scientific results and, more importantly, to their eventual admission into clinical trials. Both complexes share a relatively low systemic toxicity that allows reaching rather high dosages, comparable to those of carboplatin. Soon it became evident that NAMI-A and KP1019, in spite of their structural similarity, manifest very distinct chemical and biological properties. The pharmacological performances qualified KP1019 mainly as a cytotoxic drug for the treatment of platinum-resistant colorectal cancers, whereas NAMI-A gained the reputation of a potential anticancer drug with negligible effects on the primary tumor but a pronounced ability to affect metastases. We believe that a strictly comparative exam of NAMI-A and KP1019, based on the substantial body of studies accomplished since their discovery almost 30 years ago, might be an useful exercise, both for assessing the state of the art in terms of biological and clinical profiles, and of the inherent mechanisms, and for envisaging possible future developments in the light of past achievements.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"18 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/9783110470734-011","citationCount":"30","resultStr":"{\"title\":\"The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years?\",\"authors\":\"Enzo Alessio, Luigi Messori\",\"doi\":\"10.1515/9783110470734-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The general interest in anticancer metal-based drugs and some encouraging pharmacological results obtained at the beginning of the investigations on innovative Ru-based drugs triggered a lot of attention on NAMI-A and KP1019, the two Ru(III) coordination compounds that are the subject of this review. This great attention led to a considerable amount of scientific results and, more importantly, to their eventual admission into clinical trials. Both complexes share a relatively low systemic toxicity that allows reaching rather high dosages, comparable to those of carboplatin. Soon it became evident that NAMI-A and KP1019, in spite of their structural similarity, manifest very distinct chemical and biological properties. The pharmacological performances qualified KP1019 mainly as a cytotoxic drug for the treatment of platinum-resistant colorectal cancers, whereas NAMI-A gained the reputation of a potential anticancer drug with negligible effects on the primary tumor but a pronounced ability to affect metastases. We believe that a strictly comparative exam of NAMI-A and KP1019, based on the substantial body of studies accomplished since their discovery almost 30 years ago, might be an useful exercise, both for assessing the state of the art in terms of biological and clinical profiles, and of the inherent mechanisms, and for envisaging possible future developments in the light of past achievements.</p>\",\"PeriodicalId\":18698,\"journal\":{\"name\":\"Metal ions in life sciences\",\"volume\":\"18 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/9783110470734-011\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal ions in life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110470734-011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110470734-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years?
The general interest in anticancer metal-based drugs and some encouraging pharmacological results obtained at the beginning of the investigations on innovative Ru-based drugs triggered a lot of attention on NAMI-A and KP1019, the two Ru(III) coordination compounds that are the subject of this review. This great attention led to a considerable amount of scientific results and, more importantly, to their eventual admission into clinical trials. Both complexes share a relatively low systemic toxicity that allows reaching rather high dosages, comparable to those of carboplatin. Soon it became evident that NAMI-A and KP1019, in spite of their structural similarity, manifest very distinct chemical and biological properties. The pharmacological performances qualified KP1019 mainly as a cytotoxic drug for the treatment of platinum-resistant colorectal cancers, whereas NAMI-A gained the reputation of a potential anticancer drug with negligible effects on the primary tumor but a pronounced ability to affect metastases. We believe that a strictly comparative exam of NAMI-A and KP1019, based on the substantial body of studies accomplished since their discovery almost 30 years ago, might be an useful exercise, both for assessing the state of the art in terms of biological and clinical profiles, and of the inherent mechanisms, and for envisaging possible future developments in the light of past achievements.