异步低精度随机梯度下降的理解与优化。

Christopher De Sa, Matthew Feldman, Christopher Ré, Kunle Olukotun
{"title":"异步低精度随机梯度下降的理解与优化。","authors":"Christopher De Sa,&nbsp;Matthew Feldman,&nbsp;Christopher Ré,&nbsp;Kunle Olukotun","doi":"10.1145/3140659.3080248","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems.</p>","PeriodicalId":91388,"journal":{"name":"Proceedings. International Symposium on Computer Architecture","volume":"2017 ","pages":"561-574"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3140659.3080248","citationCount":"0","resultStr":"{\"title\":\"Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent.\",\"authors\":\"Christopher De Sa,&nbsp;Matthew Feldman,&nbsp;Christopher Ré,&nbsp;Kunle Olukotun\",\"doi\":\"10.1145/3140659.3080248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems.</p>\",\"PeriodicalId\":91388,\"journal\":{\"name\":\"Proceedings. International Symposium on Computer Architecture\",\"volume\":\"2017 \",\"pages\":\"561-574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3140659.3080248\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3140659.3080248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3140659.3080248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机梯度下降(SGD)是机器学习和其他领域中最流行的数值算法之一。由于这种情况在可预见的未来可能会持续下去,因此研究能够使其在并行硬件上快速运行的技术非常重要。在本文中,我们首次分析了一种名为Buckwild!它使用异步执行和低精度计算。我们介绍了DMGC模型,这是实现低精度SGD时存在的参数空间的第一个概念化,并表明它提供了一种对这些算法进行分类和对其性能建模的方法。我们利用这种洞察力来提出和分析技术,以提高低精度SGD的速度。首先,我们提出可以将现有cpu的吞吐量提高11倍的软件优化。其次,我们提出了架构上的变化,包括一种新的缓存技术,我们称之为顽固缓存,它可以提高吞吐量,超出当前一代硬件的限制。我们还在FPGA上实现和分析了低精度SGD,这是未来SGD系统中CPU的一个有前途的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent.

Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent.

Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent.

Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent.

Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信