Ezqsar:一个直接从结构中开发QSAR模型的R包。

Q2 Pharmacology, Toxicology and Pharmaceutics
Open Medicinal Chemistry Journal Pub Date : 2017-11-30 eCollection Date: 2017-01-01 DOI:10.2174/1874104501711010212
Jamal Shamsara
{"title":"Ezqsar:一个直接从结构中开发QSAR模型的R包。","authors":"Jamal Shamsara","doi":"10.2174/1874104501711010212","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantitative Structure Activity Relationship (QSAR) is a difficult computational chemistry approach for beginner scientists and a time consuming one for even more experienced researchers.</p><p><strong>Method and materials: </strong>Ezqsar which is introduced here addresses both the issues. It considers important steps to have a reliable QSAR model. Besides calculation of descriptors using CDK library, highly correlated descriptors are removed, a provided data set is divided to train and test sets, descriptors are selected by a statistical method, statistical parameter for the model are presented and applicability domain is investigated.</p><p><strong>Results: </strong>Finally, the model can be applied to predict the activities for an extra set of molecules for a purpose of either lead optimization or virtual screening. The performance is demonstrated by an example.</p><p><strong>Conclusion: </strong>The R package, ezqsar, is freely available <i>via</i> https://github.com/shamsaraj/ezqsar, and it runs on Linux and MS-Windows.</p>","PeriodicalId":39133,"journal":{"name":"Open Medicinal Chemistry Journal","volume":"11 ","pages":"212-221"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874104501711010212","citationCount":"12","resultStr":"{\"title\":\"Ezqsar: An R Package for Developing QSAR Models Directly From Structures.\",\"authors\":\"Jamal Shamsara\",\"doi\":\"10.2174/1874104501711010212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quantitative Structure Activity Relationship (QSAR) is a difficult computational chemistry approach for beginner scientists and a time consuming one for even more experienced researchers.</p><p><strong>Method and materials: </strong>Ezqsar which is introduced here addresses both the issues. It considers important steps to have a reliable QSAR model. Besides calculation of descriptors using CDK library, highly correlated descriptors are removed, a provided data set is divided to train and test sets, descriptors are selected by a statistical method, statistical parameter for the model are presented and applicability domain is investigated.</p><p><strong>Results: </strong>Finally, the model can be applied to predict the activities for an extra set of molecules for a purpose of either lead optimization or virtual screening. The performance is demonstrated by an example.</p><p><strong>Conclusion: </strong>The R package, ezqsar, is freely available <i>via</i> https://github.com/shamsaraj/ezqsar, and it runs on Linux and MS-Windows.</p>\",\"PeriodicalId\":39133,\"journal\":{\"name\":\"Open Medicinal Chemistry Journal\",\"volume\":\"11 \",\"pages\":\"212-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/1874104501711010212\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Medicinal Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874104501711010212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicinal Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874104501711010212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 12

摘要

背景:定量结构活性关系(Quantitative Structure - Activity Relationship, QSAR)是一种对初学者来说比较困难的计算化学方法,对于经验丰富的研究人员来说更是费时费力。方法和材料:这里介绍的Ezqsar解决了这两个问题。它考虑了建立可靠的QSAR模型的重要步骤。在利用CDK库计算描述符的基础上,去除高度相关的描述符,将给定的数据集划分为训练集和测试集,采用统计方法选择描述符,给出模型的统计参数,研究模型的适用范围。结果:最后,该模型可用于预测一组额外分子的活性,用于先导优化或虚拟筛选。通过实例验证了该方法的性能。结论:R包ezqsar可以通过https://github.com/shamsaraj/ezqsar免费获得,它运行在Linux和MS-Windows上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ezqsar: An R Package for Developing QSAR Models Directly From Structures.

Ezqsar: An R Package for Developing QSAR Models Directly From Structures.

Ezqsar: An R Package for Developing QSAR Models Directly From Structures.

Ezqsar: An R Package for Developing QSAR Models Directly From Structures.

Background: Quantitative Structure Activity Relationship (QSAR) is a difficult computational chemistry approach for beginner scientists and a time consuming one for even more experienced researchers.

Method and materials: Ezqsar which is introduced here addresses both the issues. It considers important steps to have a reliable QSAR model. Besides calculation of descriptors using CDK library, highly correlated descriptors are removed, a provided data set is divided to train and test sets, descriptors are selected by a statistical method, statistical parameter for the model are presented and applicability domain is investigated.

Results: Finally, the model can be applied to predict the activities for an extra set of molecules for a purpose of either lead optimization or virtual screening. The performance is demonstrated by an example.

Conclusion: The R package, ezqsar, is freely available via https://github.com/shamsaraj/ezqsar, and it runs on Linux and MS-Windows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Medicinal Chemistry Journal
Open Medicinal Chemistry Journal Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.40
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信