[突破性技术在育种中的应用前景:CRISPR/Cas9植物基因组编辑系统]。

Genetika Pub Date : 2016-07-01
E K Khlestkina, V K Shumny
{"title":"[突破性技术在育种中的应用前景:CRISPR/Cas9植物基因组编辑系统]。","authors":"E K Khlestkina,&nbsp;V K Shumny","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Integration of the methods of contemporary genetics and biotechnology into the breeding process is assessed, and the potential role and efficacy of genome editing as a novel approach is discussed. Use of molecular (DNA) markers for breeding was proposed more than 30 years ago. Nowadays, they are widely used as an accessory tool in order to select plants by mono- and olygogenic traits. Presently, the genomic approaches are actively introduced into the breeding processes owing to automatization of DNA polymorphism analyses and development of comparatively cheap methods of DNA sequencing. These approaches provide effective selection by complex quantitative traits, and are based on the full-genome genotyping of the breeding material. Moreover, biotechnological tools, such as doubled haploids production, which provides fast obtainment of homozygotes, are widely used in plant breeding. Use of genomic and biotechnological approaches makes the development of varieties less time consuming. It also decreases the cultivated areas and financial expenditures required for accomplishment of the breeding process. However, the capacities of modern breeding are not limited to only these advantages. Experiments carried out on plants about 10 years ago provided the first data on genome editing. In the last two years, we have observed a sharp increase in the number of publications that report about successful experiments aimed at plant genome editing owing to the use of the relatively simple and convenient CRISPR/Cas9 system. The goal of some of these experiments was to modify agriculturally valuable genes of cultivated plants, such as potato, cabbage, tomato, maize, rice, wheat, barley, soybean and sorghum. These studies show that it is possible to obtain nontransgenic plants carrying stably inherited, specifically determined mutations using the CRISPR/Cas9 system. This possibility offers the challenge to obtain varieties with predetermined mono- and olygogenic traits.</p>","PeriodicalId":12707,"journal":{"name":"Genetika","volume":"52 7","pages":"774-87"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing].\",\"authors\":\"E K Khlestkina,&nbsp;V K Shumny\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integration of the methods of contemporary genetics and biotechnology into the breeding process is assessed, and the potential role and efficacy of genome editing as a novel approach is discussed. Use of molecular (DNA) markers for breeding was proposed more than 30 years ago. Nowadays, they are widely used as an accessory tool in order to select plants by mono- and olygogenic traits. Presently, the genomic approaches are actively introduced into the breeding processes owing to automatization of DNA polymorphism analyses and development of comparatively cheap methods of DNA sequencing. These approaches provide effective selection by complex quantitative traits, and are based on the full-genome genotyping of the breeding material. Moreover, biotechnological tools, such as doubled haploids production, which provides fast obtainment of homozygotes, are widely used in plant breeding. Use of genomic and biotechnological approaches makes the development of varieties less time consuming. It also decreases the cultivated areas and financial expenditures required for accomplishment of the breeding process. However, the capacities of modern breeding are not limited to only these advantages. Experiments carried out on plants about 10 years ago provided the first data on genome editing. In the last two years, we have observed a sharp increase in the number of publications that report about successful experiments aimed at plant genome editing owing to the use of the relatively simple and convenient CRISPR/Cas9 system. The goal of some of these experiments was to modify agriculturally valuable genes of cultivated plants, such as potato, cabbage, tomato, maize, rice, wheat, barley, soybean and sorghum. These studies show that it is possible to obtain nontransgenic plants carrying stably inherited, specifically determined mutations using the CRISPR/Cas9 system. This possibility offers the challenge to obtain varieties with predetermined mono- and olygogenic traits.</p>\",\"PeriodicalId\":12707,\"journal\":{\"name\":\"Genetika\",\"volume\":\"52 7\",\"pages\":\"774-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetika","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估了当代遗传学和生物技术方法在育种过程中的整合,并讨论了基因组编辑作为一种新方法的潜在作用和功效。使用分子(DNA)标记进行育种是在30多年前提出的。目前,它们被广泛地作为一种辅助工具,用于单基因和多基因性状的筛选。目前,由于DNA多态性分析的自动化和相对廉价的DNA测序方法的发展,基因组学方法被积极引入育种过程。这些方法通过复杂的数量性状提供了有效的选择,并基于育种材料的全基因组基因分型。此外,双单倍体生产等生物技术手段可以快速获得纯合子,在植物育种中得到广泛应用。基因组学和生物技术方法的使用减少了品种开发的时间。它还减少了种植面积和完成育种过程所需的财政支出。然而,现代育种的能力不仅限于这些优势。大约10年前在植物上进行的实验提供了基因组编辑的第一批数据。在过去的两年中,我们观察到,由于使用了相对简单和方便的CRISPR/Cas9系统,报道成功的植物基因组编辑实验的出版物数量急剧增加。其中一些实验的目标是修改栽培植物的农业价值基因,如马铃薯、卷心菜、番茄、玉米、水稻、小麦、大麦、大豆和高粱。这些研究表明,使用CRISPR/Cas9系统可以获得携带稳定遗传的、特异性确定突变的非转基因植物。这种可能性对获得具有预定单基因和多基因性状的品种提出了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing].

Integration of the methods of contemporary genetics and biotechnology into the breeding process is assessed, and the potential role and efficacy of genome editing as a novel approach is discussed. Use of molecular (DNA) markers for breeding was proposed more than 30 years ago. Nowadays, they are widely used as an accessory tool in order to select plants by mono- and olygogenic traits. Presently, the genomic approaches are actively introduced into the breeding processes owing to automatization of DNA polymorphism analyses and development of comparatively cheap methods of DNA sequencing. These approaches provide effective selection by complex quantitative traits, and are based on the full-genome genotyping of the breeding material. Moreover, biotechnological tools, such as doubled haploids production, which provides fast obtainment of homozygotes, are widely used in plant breeding. Use of genomic and biotechnological approaches makes the development of varieties less time consuming. It also decreases the cultivated areas and financial expenditures required for accomplishment of the breeding process. However, the capacities of modern breeding are not limited to only these advantages. Experiments carried out on plants about 10 years ago provided the first data on genome editing. In the last two years, we have observed a sharp increase in the number of publications that report about successful experiments aimed at plant genome editing owing to the use of the relatively simple and convenient CRISPR/Cas9 system. The goal of some of these experiments was to modify agriculturally valuable genes of cultivated plants, such as potato, cabbage, tomato, maize, rice, wheat, barley, soybean and sorghum. These studies show that it is possible to obtain nontransgenic plants carrying stably inherited, specifically determined mutations using the CRISPR/Cas9 system. This possibility offers the challenge to obtain varieties with predetermined mono- and olygogenic traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信