{"title":"广义网络中用户兴趣决定的信息扩散分析与控制。","authors":"Eleni Stai, Vasileios Karyotis, Symeon Papavassiliou","doi":"10.1186/s40649-015-0025-4","DOIUrl":null,"url":null,"abstract":"<p><p>The diffusion of useful information in generalized networks, such as those consisting of wireless physical substrates and social network overlays is very important for theoretical and practical applications. Contrary to previous works, we focus on the impact of user interest and its features (e.g., interest periodicity) on the dynamics and control of diffusion of useful information within such complex wireless-social systems. By considering the impact of temporal and topical variations of users interests, e.g., seasonal periodicity of interest in summer vacation advertisements which spread more effectively during Spring-Summer months, we develop an epidemic-based mathematical framework for modeling and analyzing such information dissemination processes and use three indicative operational scenarios to demonstrate the solutions and results that can be obtained by the corresponding differential equation-based formalism. We then develop an optimal control framework subject to the above information diffusion modeling that allows controlling the trade-off between information propagation efficiency and the associated cost, by considering and leveraging on the impact that user interests have on the diffusion processes. By analysis and extensive simulations, significant outcomes are obtained on the impact of each network layer and the associated interest parameters on the dynamics of useful information diffusion. Furthermore, several behavioral properties of the optimal control of the useful information diffusion with respect to the number of infected/informed nodes and the evolving user interest are shown through analysis and verified via simulations. Specifically, a key finding is that low interest-related diffusion can be aided by utilizing proper optimal controls. Our work in this paper paves the way towards this user-centered information diffusion framework.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"2 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-015-0025-4","citationCount":"7","resultStr":"{\"title\":\"Analysis and control of information diffusion dictated by user interest in generalized networks.\",\"authors\":\"Eleni Stai, Vasileios Karyotis, Symeon Papavassiliou\",\"doi\":\"10.1186/s40649-015-0025-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diffusion of useful information in generalized networks, such as those consisting of wireless physical substrates and social network overlays is very important for theoretical and practical applications. Contrary to previous works, we focus on the impact of user interest and its features (e.g., interest periodicity) on the dynamics and control of diffusion of useful information within such complex wireless-social systems. By considering the impact of temporal and topical variations of users interests, e.g., seasonal periodicity of interest in summer vacation advertisements which spread more effectively during Spring-Summer months, we develop an epidemic-based mathematical framework for modeling and analyzing such information dissemination processes and use three indicative operational scenarios to demonstrate the solutions and results that can be obtained by the corresponding differential equation-based formalism. We then develop an optimal control framework subject to the above information diffusion modeling that allows controlling the trade-off between information propagation efficiency and the associated cost, by considering and leveraging on the impact that user interests have on the diffusion processes. By analysis and extensive simulations, significant outcomes are obtained on the impact of each network layer and the associated interest parameters on the dynamics of useful information diffusion. Furthermore, several behavioral properties of the optimal control of the useful information diffusion with respect to the number of infected/informed nodes and the evolving user interest are shown through analysis and verified via simulations. Specifically, a key finding is that low interest-related diffusion can be aided by utilizing proper optimal controls. Our work in this paper paves the way towards this user-centered information diffusion framework.</p>\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"2 1\",\"pages\":\"18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40649-015-0025-4\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-015-0025-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-015-0025-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Analysis and control of information diffusion dictated by user interest in generalized networks.
The diffusion of useful information in generalized networks, such as those consisting of wireless physical substrates and social network overlays is very important for theoretical and practical applications. Contrary to previous works, we focus on the impact of user interest and its features (e.g., interest periodicity) on the dynamics and control of diffusion of useful information within such complex wireless-social systems. By considering the impact of temporal and topical variations of users interests, e.g., seasonal periodicity of interest in summer vacation advertisements which spread more effectively during Spring-Summer months, we develop an epidemic-based mathematical framework for modeling and analyzing such information dissemination processes and use three indicative operational scenarios to demonstrate the solutions and results that can be obtained by the corresponding differential equation-based formalism. We then develop an optimal control framework subject to the above information diffusion modeling that allows controlling the trade-off between information propagation efficiency and the associated cost, by considering and leveraging on the impact that user interests have on the diffusion processes. By analysis and extensive simulations, significant outcomes are obtained on the impact of each network layer and the associated interest parameters on the dynamics of useful information diffusion. Furthermore, several behavioral properties of the optimal control of the useful information diffusion with respect to the number of infected/informed nodes and the evolving user interest are shown through analysis and verified via simulations. Specifically, a key finding is that low interest-related diffusion can be aided by utilizing proper optimal controls. Our work in this paper paves the way towards this user-centered information diffusion framework.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.