{"title":"细胞重编程:一种了解衰老机制的新方法。","authors":"Burcu Yener Ilce, Umut Cagin, Acelya Yilmazer","doi":"10.1002/wdev.308","DOIUrl":null,"url":null,"abstract":"<p><p>Increased life expectancy, due to the rise in life quality and the decline in mortality rates, is leading to a society in which the population aged 60 and over is growing more rapidly than the entire population. Although various models and model organisms have been employed to investigate the mechanism of aging, induced pluripotent stem cells (iPSCs) are useful candidates to study human aging and age-related human diseases. This work discusses how iPSCs can be used as an alternative to the model organisms such as yeast, Caenorhabditis elegans, Drosophila melanogaster, or the mouse. The main focus is the reprogramming technology of somatic cells which is thought to provide an important perspective for rejuvenation strategies. The effects and relationships between aging and cell reprogramming are discussed, and studies related to aging and cell reprogramming are critically reviewed. We believe that for future studies, different parameters and detailed quantitative experiments should be performed in order to clearly understand the effect of aging on human cell reprogramming with respect to programming efficiency and differentiation capacity. This way, new insights will be provided to prevent or even reverse the aging process. WIREs Dev Biol 2018, 7:e308. doi: 10.1002/wdev.308 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.308","citationCount":"7","resultStr":"{\"title\":\"Cellular reprogramming: A new way to understand aging mechanisms.\",\"authors\":\"Burcu Yener Ilce, Umut Cagin, Acelya Yilmazer\",\"doi\":\"10.1002/wdev.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increased life expectancy, due to the rise in life quality and the decline in mortality rates, is leading to a society in which the population aged 60 and over is growing more rapidly than the entire population. Although various models and model organisms have been employed to investigate the mechanism of aging, induced pluripotent stem cells (iPSCs) are useful candidates to study human aging and age-related human diseases. This work discusses how iPSCs can be used as an alternative to the model organisms such as yeast, Caenorhabditis elegans, Drosophila melanogaster, or the mouse. The main focus is the reprogramming technology of somatic cells which is thought to provide an important perspective for rejuvenation strategies. The effects and relationships between aging and cell reprogramming are discussed, and studies related to aging and cell reprogramming are critically reviewed. We believe that for future studies, different parameters and detailed quantitative experiments should be performed in order to clearly understand the effect of aging on human cell reprogramming with respect to programming efficiency and differentiation capacity. This way, new insights will be provided to prevent or even reverse the aging process. WIREs Dev Biol 2018, 7:e308. doi: 10.1002/wdev.308 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wdev.308\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Cellular reprogramming: A new way to understand aging mechanisms.
Increased life expectancy, due to the rise in life quality and the decline in mortality rates, is leading to a society in which the population aged 60 and over is growing more rapidly than the entire population. Although various models and model organisms have been employed to investigate the mechanism of aging, induced pluripotent stem cells (iPSCs) are useful candidates to study human aging and age-related human diseases. This work discusses how iPSCs can be used as an alternative to the model organisms such as yeast, Caenorhabditis elegans, Drosophila melanogaster, or the mouse. The main focus is the reprogramming technology of somatic cells which is thought to provide an important perspective for rejuvenation strategies. The effects and relationships between aging and cell reprogramming are discussed, and studies related to aging and cell reprogramming are critically reviewed. We believe that for future studies, different parameters and detailed quantitative experiments should be performed in order to clearly understand the effect of aging on human cell reprogramming with respect to programming efficiency and differentiation capacity. This way, new insights will be provided to prevent or even reverse the aging process. WIREs Dev Biol 2018, 7:e308. doi: 10.1002/wdev.308 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.