串联质谱统计置信估计的渐进校准和平均:为什么满足于单一诱饵?

Uri Keich, William Stafford Noble
{"title":"串联质谱统计置信估计的渐进校准和平均:为什么满足于单一诱饵?","authors":"Uri Keich,&nbsp;William Stafford Noble","doi":"10.1007/978-3-319-56970-3_7","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, \"Partial Calibration\" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and \"Averaged TDC\" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with \"Progressive Calibration\" (PC), which attempts to find the \"right\" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the <i>Plasmodium falciparum</i> data it typically yields almost the entire 17% increase in discoveries that \"full calibration\" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"10229 ","pages":"99-116"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_7","citationCount":"12","resultStr":"{\"title\":\"Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?\",\"authors\":\"Uri Keich,&nbsp;William Stafford Noble\",\"doi\":\"10.1007/978-3-319-56970-3_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, \\\"Partial Calibration\\\" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and \\\"Averaged TDC\\\" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with \\\"Progressive Calibration\\\" (PC), which attempts to find the \\\"right\\\" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the <i>Plasmodium falciparum</i> data it typically yields almost the entire 17% increase in discoveries that \\\"full calibration\\\" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"10229 \",\"pages\":\"99-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-56970-3_7\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-56970-3_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-56970-3_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在一系列串联质谱识别中,估计错误发现率(FDR)主要是通过目标-诱饵竞争(TDC)来实现的。在这里,我们提供了两种新的方法,可以使用任意少量的额外随机抽取的诱饵数据库来提高TDC。具体而言,“部分校准”采用了一种新的元评分方案,使我们能够逐渐受益于鉴定校准产量数量的增加,而“平均TDC”(a-TDC)减少了TDC对小FDR值及其整个变异性的自由偏差。将a-TDC与“渐进校准”(PC)相结合,它试图找到校准所需的“正确”诱饵数量,我们看到了实际数据集的重大影响:在分析恶性疟原虫数据时,它通常会产生几乎17%的发现增长,而“完全校准”的产量(在FDR水平0.05)使用60倍的诱饵。我们的方法通过一种新颖的现实仿真方案得到了进一步验证,重要的是,它们更普遍地适用于在搜索不完整数据库的发现中控制FDR的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, "Partial Calibration" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and "Averaged TDC" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with "Progressive Calibration" (PC), which attempts to find the "right" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the Plasmodium falciparum data it typically yields almost the entire 17% increase in discoveries that "full calibration" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信