Xiaojia He, Peter Fu, Winfred G Aker, Huey-Min Hwang
{"title":"纳米-生物-生态相互作用介导的工程纳米材料的毒性。","authors":"Xiaojia He, Peter Fu, Winfred G Aker, Huey-Min Hwang","doi":"10.1080/10590501.2017.1418793","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered nanomaterials may adversely impact human health and environmental safety by nano-bio-eco interactions not fully understood. Their interaction with biotic and abiotic environments are varied and complicated, ranging from individual species to entire ecosystems. Their behavior, transport, fate, and toxicological profiles in these interactions, addressed in a pioneering study, are subsequently seldom reported. Biological, chemical, and physical dimension properties, the so-called multidimensional characterization, determine interactions. Intermediate species generated in the dynamic process of nanomaterial transformation increase the complexity of assessing nanotoxicity. We review recent progress in understanding these interactions, discuss the challenges of the study, and suggest future research directions.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"36 1","pages":"21-42"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2017.1418793","citationCount":"50","resultStr":"{\"title\":\"Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions.\",\"authors\":\"Xiaojia He, Peter Fu, Winfred G Aker, Huey-Min Hwang\",\"doi\":\"10.1080/10590501.2017.1418793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Engineered nanomaterials may adversely impact human health and environmental safety by nano-bio-eco interactions not fully understood. Their interaction with biotic and abiotic environments are varied and complicated, ranging from individual species to entire ecosystems. Their behavior, transport, fate, and toxicological profiles in these interactions, addressed in a pioneering study, are subsequently seldom reported. Biological, chemical, and physical dimension properties, the so-called multidimensional characterization, determine interactions. Intermediate species generated in the dynamic process of nanomaterial transformation increase the complexity of assessing nanotoxicity. We review recent progress in understanding these interactions, discuss the challenges of the study, and suggest future research directions.</p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"36 1\",\"pages\":\"21-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2017.1418793\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2017.1418793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2017.1418793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions.
Engineered nanomaterials may adversely impact human health and environmental safety by nano-bio-eco interactions not fully understood. Their interaction with biotic and abiotic environments are varied and complicated, ranging from individual species to entire ecosystems. Their behavior, transport, fate, and toxicological profiles in these interactions, addressed in a pioneering study, are subsequently seldom reported. Biological, chemical, and physical dimension properties, the so-called multidimensional characterization, determine interactions. Intermediate species generated in the dynamic process of nanomaterial transformation increase the complexity of assessing nanotoxicity. We review recent progress in understanding these interactions, discuss the challenges of the study, and suggest future research directions.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.