基于自适应模型选择的多变量临床时间序列个性化预测框架。

Zitao Liu, Milos Hauskrecht
{"title":"基于自适应模型选择的多变量临床时间序列个性化预测框架。","authors":"Zitao Liu,&nbsp;Milos Hauskrecht","doi":"10.1145/3132847.3132859","DOIUrl":null,"url":null,"abstract":"<p><p>Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2017 ","pages":"1169-1177"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3132847.3132859","citationCount":"9","resultStr":"{\"title\":\"A Personalized Predictive Framework for Multivariate Clinical Time Series via Adaptive Model Selection.\",\"authors\":\"Zitao Liu,&nbsp;Milos Hauskrecht\",\"doi\":\"10.1145/3132847.3132859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.</p>\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"2017 \",\"pages\":\"1169-1177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3132847.3132859\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3132859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为患者建立准确的临床时间序列预测模型对于了解患者病情、动态和最佳患者管理至关重要。不幸的是,这个过程并不简单。首先,患者特异性差异通常很大,从许多不同患者那里获得或学习的基于人群的模型往往无法支持对每个患者的准确预测。此外,在任何时间点观察到的一个患者的时间序列可能太短,不足以仅从患者自己的数据中学习高质量的患者特定模型。为了解决这些问题,我们提出、开发并试验了一种新的自适应预测框架,用于为患者构建多变量临床时间序列模型,并支持针对患者的预测。该框架依赖于自适应模型切换方法,在任何时间点从许多可能的模型池中选择最有希望的时间序列模型,从而结合了群体、患者特异性和短期个性化预测模型的优点。我们证明了自适应模型切换框架是一种非常有前途的支持个性化时间序列预测的方法,并且它能够优于基于纯群体和特定患者模型以及其他特定患者模型适应策略的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Personalized Predictive Framework for Multivariate Clinical Time Series via Adaptive Model Selection.

A Personalized Predictive Framework for Multivariate Clinical Time Series via Adaptive Model Selection.

Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信