{"title":"偶氮染料卡莫辛对溶菌酶淀粉样蛋白纤维形成的相互作用及抑制作用","authors":"Anirban Basu and Gopinatha Suresh Kumar","doi":"10.1039/C7MB00207F","DOIUrl":null,"url":null,"abstract":"<p >The binding of the common food colorant carmoisine and its inhibitory effect on amyloid fibrillation in lysozyme have been investigated. Since humans are increasingly exposed to various food colorants like carmoisine, such studies are highly relevant. In the presence of lysozyme, the carmoisine absorption spectrum exhibited hypochromic changes. The intrinsic fluorescence of lysozyme was also quenched on interaction. Time-resolved fluorescence results suggested that the binding mechanism involved ground state complexation. The binding was predominantly dominated by non-polyelectrolytic forces. The molecular distance between the donor (lysozyme) and the acceptor (carmoisine), calculated from FRET theory, was found to be 3.37 nm, indicating that carmoisine binds close to Trp-62/63 residues in the β-domain of the protein. Information on alterations in the microenvironment surrounding the Trp-residues was also obtained from synchronous fluorescence data. Carmoisine binding induced significant loss in the alpha helical organization of lysozyme. The binding, nevertheless, did not influence the thermal stability of lysozyme significantly. The binding reaction was exothermic and driven by large negative enthalpy and small but favourable entropic contributions. Thioflavin T assay, far-UV circular dichroism studies and AFM imaging profiles testified that carmoisine had a significant inhibitory effect on amyloid fibrillogenesis in lysozyme. Carmoisine also had a definitive defibrillating effect on existing fibrils. The results may provide new insights for designing new small molecule inhibitors for amyloid related diseases.</p>","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":" 8","pages":" 1552-1564"},"PeriodicalIF":3.7430,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C7MB00207F","citationCount":"10","resultStr":"{\"title\":\"Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis†\",\"authors\":\"Anirban Basu and Gopinatha Suresh Kumar\",\"doi\":\"10.1039/C7MB00207F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The binding of the common food colorant carmoisine and its inhibitory effect on amyloid fibrillation in lysozyme have been investigated. Since humans are increasingly exposed to various food colorants like carmoisine, such studies are highly relevant. In the presence of lysozyme, the carmoisine absorption spectrum exhibited hypochromic changes. The intrinsic fluorescence of lysozyme was also quenched on interaction. Time-resolved fluorescence results suggested that the binding mechanism involved ground state complexation. The binding was predominantly dominated by non-polyelectrolytic forces. The molecular distance between the donor (lysozyme) and the acceptor (carmoisine), calculated from FRET theory, was found to be 3.37 nm, indicating that carmoisine binds close to Trp-62/63 residues in the β-domain of the protein. Information on alterations in the microenvironment surrounding the Trp-residues was also obtained from synchronous fluorescence data. Carmoisine binding induced significant loss in the alpha helical organization of lysozyme. The binding, nevertheless, did not influence the thermal stability of lysozyme significantly. The binding reaction was exothermic and driven by large negative enthalpy and small but favourable entropic contributions. Thioflavin T assay, far-UV circular dichroism studies and AFM imaging profiles testified that carmoisine had a significant inhibitory effect on amyloid fibrillogenesis in lysozyme. Carmoisine also had a definitive defibrillating effect on existing fibrils. The results may provide new insights for designing new small molecule inhibitors for amyloid related diseases.</p>\",\"PeriodicalId\":90,\"journal\":{\"name\":\"Molecular BioSystems\",\"volume\":\" 8\",\"pages\":\" 1552-1564\"},\"PeriodicalIF\":3.7430,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C7MB00207F\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular BioSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00207f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c7mb00207f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis†
The binding of the common food colorant carmoisine and its inhibitory effect on amyloid fibrillation in lysozyme have been investigated. Since humans are increasingly exposed to various food colorants like carmoisine, such studies are highly relevant. In the presence of lysozyme, the carmoisine absorption spectrum exhibited hypochromic changes. The intrinsic fluorescence of lysozyme was also quenched on interaction. Time-resolved fluorescence results suggested that the binding mechanism involved ground state complexation. The binding was predominantly dominated by non-polyelectrolytic forces. The molecular distance between the donor (lysozyme) and the acceptor (carmoisine), calculated from FRET theory, was found to be 3.37 nm, indicating that carmoisine binds close to Trp-62/63 residues in the β-domain of the protein. Information on alterations in the microenvironment surrounding the Trp-residues was also obtained from synchronous fluorescence data. Carmoisine binding induced significant loss in the alpha helical organization of lysozyme. The binding, nevertheless, did not influence the thermal stability of lysozyme significantly. The binding reaction was exothermic and driven by large negative enthalpy and small but favourable entropic contributions. Thioflavin T assay, far-UV circular dichroism studies and AFM imaging profiles testified that carmoisine had a significant inhibitory effect on amyloid fibrillogenesis in lysozyme. Carmoisine also had a definitive defibrillating effect on existing fibrils. The results may provide new insights for designing new small molecule inhibitors for amyloid related diseases.
期刊介绍:
Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.