{"title":"GRHL3敲低可抑制人类结直肠癌细胞活性,诱导细胞周期阻滞和凋亡。","authors":"Xiao-Kang Wang, Fen-Fang Zhou, Hao-Ran Tao, Xin Wang, Chi Zhang, Fei Su, Shi-Pei Wang, Li-Hua Xu, Xue-Kai Pan, Mao-Hui Feng, Wei Xie","doi":"10.1007/s11596-017-1821-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Grainyhead-like 3 (GRHL3) is involved in epidermal barrier formation, neural tube closure and wound repair. Previous studies have suggested that GRHL3 has been linked to many different types of cancers. However, to date, its effects on human colorectal cancer (CRC) has not been clarified yet. Our microarray analysis has indicated predominant GRHL3 expression in CRC. The purpose of this study was to investigate the expression and significance of GRHL3 in CRC tumorigenesis using CRC tissues and paired paracancerous tissues, as well as using distinct CRC cell lines (HT29 and DLD1). We observed increased GRHL3 expression at both mRNA and protein levels in CRC tissues and CRC cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Moreover, silencing GRHL3 with siRNA could suppress CRC cell proliferation, viability and migration in vitro. We also found that knockdown of GRHL3 could promote cell cycle arrest at G<sub>0</sub>/G<sub>1</sub> phase in HT29 cells and DLD1 cells, and induce cell apoptosis in HT29 cells. Together, our study revealed the down-regulation of GRHL3 in vitro could inhibit CRC cell activity and trigger cell cycle arrest at G<sub>0</sub>/G<sub>1</sub> phase and apoptosis.</p>","PeriodicalId":15925,"journal":{"name":"Journal of Huazhong University of Science and Technology [Medical Sciences]","volume":"37 6","pages":"880-885"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11596-017-1821-x","citationCount":"4","resultStr":"{\"title\":\"Knockdown of GRHL3 inhibits activities and induces cell cycle arrest and apoptosis of human colorectal cancer cells.\",\"authors\":\"Xiao-Kang Wang, Fen-Fang Zhou, Hao-Ran Tao, Xin Wang, Chi Zhang, Fei Su, Shi-Pei Wang, Li-Hua Xu, Xue-Kai Pan, Mao-Hui Feng, Wei Xie\",\"doi\":\"10.1007/s11596-017-1821-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Grainyhead-like 3 (GRHL3) is involved in epidermal barrier formation, neural tube closure and wound repair. Previous studies have suggested that GRHL3 has been linked to many different types of cancers. However, to date, its effects on human colorectal cancer (CRC) has not been clarified yet. Our microarray analysis has indicated predominant GRHL3 expression in CRC. The purpose of this study was to investigate the expression and significance of GRHL3 in CRC tumorigenesis using CRC tissues and paired paracancerous tissues, as well as using distinct CRC cell lines (HT29 and DLD1). We observed increased GRHL3 expression at both mRNA and protein levels in CRC tissues and CRC cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Moreover, silencing GRHL3 with siRNA could suppress CRC cell proliferation, viability and migration in vitro. We also found that knockdown of GRHL3 could promote cell cycle arrest at G<sub>0</sub>/G<sub>1</sub> phase in HT29 cells and DLD1 cells, and induce cell apoptosis in HT29 cells. Together, our study revealed the down-regulation of GRHL3 in vitro could inhibit CRC cell activity and trigger cell cycle arrest at G<sub>0</sub>/G<sub>1</sub> phase and apoptosis.</p>\",\"PeriodicalId\":15925,\"journal\":{\"name\":\"Journal of Huazhong University of Science and Technology [Medical Sciences]\",\"volume\":\"37 6\",\"pages\":\"880-885\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11596-017-1821-x\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Huazhong University of Science and Technology [Medical Sciences]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-017-1821-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Huazhong University of Science and Technology [Medical Sciences]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11596-017-1821-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/21 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
Knockdown of GRHL3 inhibits activities and induces cell cycle arrest and apoptosis of human colorectal cancer cells.
The Grainyhead-like 3 (GRHL3) is involved in epidermal barrier formation, neural tube closure and wound repair. Previous studies have suggested that GRHL3 has been linked to many different types of cancers. However, to date, its effects on human colorectal cancer (CRC) has not been clarified yet. Our microarray analysis has indicated predominant GRHL3 expression in CRC. The purpose of this study was to investigate the expression and significance of GRHL3 in CRC tumorigenesis using CRC tissues and paired paracancerous tissues, as well as using distinct CRC cell lines (HT29 and DLD1). We observed increased GRHL3 expression at both mRNA and protein levels in CRC tissues and CRC cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Moreover, silencing GRHL3 with siRNA could suppress CRC cell proliferation, viability and migration in vitro. We also found that knockdown of GRHL3 could promote cell cycle arrest at G0/G1 phase in HT29 cells and DLD1 cells, and induce cell apoptosis in HT29 cells. Together, our study revealed the down-regulation of GRHL3 in vitro could inhibit CRC cell activity and trigger cell cycle arrest at G0/G1 phase and apoptosis.