{"title":"基于秩-2对称非负矩阵分解的分层社团检测。","authors":"Rundong Du, Da Kuang, Barry Drake, Haesun Park","doi":"10.1186/s40649-017-0043-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Community discovery is an important task for revealing structures in large networks. The massive size of contemporary social networks poses a tremendous challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities.</p><p><strong>Methods: </strong>We propose a divide-and-conquer strategy to discover hierarchical community structure, nonoverlapping within each level. Our algorithm is based on the highly efficient rank-2 symmetric nonnegative matrix factorization. We solve several implementation challenges to boost its efficiency on modern computer architectures, specifically for very sparse adjacency matrices that represent a wide range of social networks.</p><p><strong>Conclusions: </strong>Empirical results have shown that our algorithm has competitive overall efficiency and leading performance in minimizing the average normalized cut, and that the nonoverlapping communities found by our algorithm recover the ground-truth communities better than state-of-the-art algorithms for overlapping community detection. In addition, we present a new dataset of the DBLP computer science bibliography network with richer meta-data and verifiable ground-truth knowledge, which can foster future research in community finding and interpretation of communities in large networks.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"4 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-017-0043-5","citationCount":"10","resultStr":"{\"title\":\"Hierarchical community detection via rank-2 symmetric nonnegative matrix factorization.\",\"authors\":\"Rundong Du, Da Kuang, Barry Drake, Haesun Park\",\"doi\":\"10.1186/s40649-017-0043-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Community discovery is an important task for revealing structures in large networks. The massive size of contemporary social networks poses a tremendous challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities.</p><p><strong>Methods: </strong>We propose a divide-and-conquer strategy to discover hierarchical community structure, nonoverlapping within each level. Our algorithm is based on the highly efficient rank-2 symmetric nonnegative matrix factorization. We solve several implementation challenges to boost its efficiency on modern computer architectures, specifically for very sparse adjacency matrices that represent a wide range of social networks.</p><p><strong>Conclusions: </strong>Empirical results have shown that our algorithm has competitive overall efficiency and leading performance in minimizing the average normalized cut, and that the nonoverlapping communities found by our algorithm recover the ground-truth communities better than state-of-the-art algorithms for overlapping community detection. In addition, we present a new dataset of the DBLP computer science bibliography network with richer meta-data and verifiable ground-truth knowledge, which can foster future research in community finding and interpretation of communities in large networks.</p>\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"4 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40649-017-0043-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-017-0043-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-017-0043-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Hierarchical community detection via rank-2 symmetric nonnegative matrix factorization.
Background: Community discovery is an important task for revealing structures in large networks. The massive size of contemporary social networks poses a tremendous challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities.
Methods: We propose a divide-and-conquer strategy to discover hierarchical community structure, nonoverlapping within each level. Our algorithm is based on the highly efficient rank-2 symmetric nonnegative matrix factorization. We solve several implementation challenges to boost its efficiency on modern computer architectures, specifically for very sparse adjacency matrices that represent a wide range of social networks.
Conclusions: Empirical results have shown that our algorithm has competitive overall efficiency and leading performance in minimizing the average normalized cut, and that the nonoverlapping communities found by our algorithm recover the ground-truth communities better than state-of-the-art algorithms for overlapping community detection. In addition, we present a new dataset of the DBLP computer science bibliography network with richer meta-data and verifiable ground-truth knowledge, which can foster future research in community finding and interpretation of communities in large networks.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.