Pietro DeLellis, Anna DiMeglio, Franco Garofalo, Francesco Lo Iudice
{"title":"通过遏制控制引导舆论动态。","authors":"Pietro DeLellis, Anna DiMeglio, Franco Garofalo, Francesco Lo Iudice","doi":"10.1186/s40649-017-0048-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we model the problem of influencing the opinions of groups of individuals as a containment control problem, as in many practical scenarios, the control goal is not full consensus among all the individual opinions, but rather their containment in a certain range, determined by a set of leaders. As in classical bounded confidence models, we consider individuals affected by the confirmation bias, thus tending to influence and to be influenced only if their opinions are sufficiently close. However, here we assume that the confidence level, modeled as a proximity threshold, is not constant and uniform across the individuals, as it depends on their opinions. Specifically, in an extremist society, the most radical agents (i.e., those with the most extreme opinions) have a higher appeal and are capable of influencing nodes with very diverse opinions. The opposite happens in a moderate society, where the more connected (i.e., influential) nodes are those with an average opinion. In three artificial societies, characterized by different levels of extremism, we test through extensive simulations the effectiveness of three alternative containment strategies, where leaders have to select the set of followers they try to directly influence. We found that, when the network size is small, a stochastic time-varying pinning strategy that does not rely on information on the network topology proves to be more effective than static strategies where this information is leveraged, while the opposite happens for large networks where the relevance of the topological information is prevalent.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"4 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-017-0048-0","citationCount":"3","resultStr":"{\"title\":\"Steering opinion dynamics via containment control.\",\"authors\":\"Pietro DeLellis, Anna DiMeglio, Franco Garofalo, Francesco Lo Iudice\",\"doi\":\"10.1186/s40649-017-0048-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we model the problem of influencing the opinions of groups of individuals as a containment control problem, as in many practical scenarios, the control goal is not full consensus among all the individual opinions, but rather their containment in a certain range, determined by a set of leaders. As in classical bounded confidence models, we consider individuals affected by the confirmation bias, thus tending to influence and to be influenced only if their opinions are sufficiently close. However, here we assume that the confidence level, modeled as a proximity threshold, is not constant and uniform across the individuals, as it depends on their opinions. Specifically, in an extremist society, the most radical agents (i.e., those with the most extreme opinions) have a higher appeal and are capable of influencing nodes with very diverse opinions. The opposite happens in a moderate society, where the more connected (i.e., influential) nodes are those with an average opinion. In three artificial societies, characterized by different levels of extremism, we test through extensive simulations the effectiveness of three alternative containment strategies, where leaders have to select the set of followers they try to directly influence. We found that, when the network size is small, a stochastic time-varying pinning strategy that does not rely on information on the network topology proves to be more effective than static strategies where this information is leveraged, while the opposite happens for large networks where the relevance of the topological information is prevalent.</p>\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"4 1\",\"pages\":\"12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40649-017-0048-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-017-0048-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-017-0048-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Steering opinion dynamics via containment control.
In this paper, we model the problem of influencing the opinions of groups of individuals as a containment control problem, as in many practical scenarios, the control goal is not full consensus among all the individual opinions, but rather their containment in a certain range, determined by a set of leaders. As in classical bounded confidence models, we consider individuals affected by the confirmation bias, thus tending to influence and to be influenced only if their opinions are sufficiently close. However, here we assume that the confidence level, modeled as a proximity threshold, is not constant and uniform across the individuals, as it depends on their opinions. Specifically, in an extremist society, the most radical agents (i.e., those with the most extreme opinions) have a higher appeal and are capable of influencing nodes with very diverse opinions. The opposite happens in a moderate society, where the more connected (i.e., influential) nodes are those with an average opinion. In three artificial societies, characterized by different levels of extremism, we test through extensive simulations the effectiveness of three alternative containment strategies, where leaders have to select the set of followers they try to directly influence. We found that, when the network size is small, a stochastic time-varying pinning strategy that does not rely on information on the network topology proves to be more effective than static strategies where this information is leveraged, while the opposite happens for large networks where the relevance of the topological information is prevalent.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.