{"title":"肉桂酸和鱼粉对盐胁迫下小麦酚酸和类黄酮化合物、脂质过氧化和脯氨酸水平有影响。","authors":"Bergüzar Karadağ, Nilgün Candan Yücel","doi":"10.1556/018.68.2017.4.5","DOIUrl":null,"url":null,"abstract":"<p><p>To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.</p>","PeriodicalId":7009,"journal":{"name":"Acta Biologica Hungarica","volume":"68 4","pages":"388-397"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1556/018.68.2017.4.5","citationCount":"3","resultStr":"{\"title\":\"Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress.\",\"authors\":\"Bergüzar Karadağ, Nilgün Candan Yücel\",\"doi\":\"10.1556/018.68.2017.4.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.</p>\",\"PeriodicalId\":7009,\"journal\":{\"name\":\"Acta Biologica Hungarica\",\"volume\":\"68 4\",\"pages\":\"388-397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1556/018.68.2017.4.5\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biologica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/018.68.2017.4.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/018.68.2017.4.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress.
To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.
期刊介绍:
Acta Biologica Hungarica provides a forum for original research works in the field of experimental biology. It covers cytology, functional morphology, embriology, genetics, endocrinology, cellular physiology, plant physiology, neurobiology, ethology and environmental biology with emphasis on toxicology. Publishes book reviews and advertisements.