脑肿瘤定量MR图像分析。

Zeina A Shboul, Sayed M S Reza, Khan M Iftekharuddin
{"title":"脑肿瘤定量MR图像分析。","authors":"Zeina A Shboul, Sayed M S Reza, Khan M Iftekharuddin","doi":"10.1007/978-3-319-68195-5_2","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an integrated quantitative MR image analysis framework to include all necessary steps such as MRI inhomogeneity correction, feature extraction, multiclass feature selection and multimodality abnormal brain tissue segmentation respectively. We first obtain mathematical algorithm to compute a novel Generalized multifractional Brownian motion (GmBm) texture feature. We then demonstrate efficacy of multiple multiresolution texture features including regular fractal dimension (FD) texture, and stochastic texture such as multifractional Brownian motion (mBm) and GmBm features for robust tumor and other abnormal tissue segmentation in brain MRI. We evaluate these texture and associated intensity features to effectively delineate multiple abnormal tissues within and around the tumor core, and stroke lesions using large scale public and private datasets.</p>","PeriodicalId":92313,"journal":{"name":"VipIMAGE 2017 : proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017. VipIMAGE (Conference) (2017 : Porto, Portugal)","volume":"27 ","pages":"10-18"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-68195-5_2","citationCount":"10","resultStr":"{\"title\":\"Quantitative MR Image Analysis for Brian Tumor.\",\"authors\":\"Zeina A Shboul, Sayed M S Reza, Khan M Iftekharuddin\",\"doi\":\"10.1007/978-3-319-68195-5_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents an integrated quantitative MR image analysis framework to include all necessary steps such as MRI inhomogeneity correction, feature extraction, multiclass feature selection and multimodality abnormal brain tissue segmentation respectively. We first obtain mathematical algorithm to compute a novel Generalized multifractional Brownian motion (GmBm) texture feature. We then demonstrate efficacy of multiple multiresolution texture features including regular fractal dimension (FD) texture, and stochastic texture such as multifractional Brownian motion (mBm) and GmBm features for robust tumor and other abnormal tissue segmentation in brain MRI. We evaluate these texture and associated intensity features to effectively delineate multiple abnormal tissues within and around the tumor core, and stroke lesions using large scale public and private datasets.</p>\",\"PeriodicalId\":92313,\"journal\":{\"name\":\"VipIMAGE 2017 : proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017. VipIMAGE (Conference) (2017 : Porto, Portugal)\",\"volume\":\"27 \",\"pages\":\"10-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-68195-5_2\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VipIMAGE 2017 : proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017. VipIMAGE (Conference) (2017 : Porto, Portugal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-68195-5_2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VipIMAGE 2017 : proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017. VipIMAGE (Conference) (2017 : Porto, Portugal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-68195-5_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一个集成的定量MR图像分析框架,包括MRI非均匀性校正、特征提取、多类特征选择和多模态异常脑组织分割等所有必要步骤。首先给出了一种计算广义多分数布朗运动纹理特征的数学算法。然后,我们证明了多种多分辨率纹理特征(包括规则分形维数(FD)纹理)和随机纹理特征(如多分数布朗运动(mBm)和GmBm特征)对脑MRI中鲁棒性肿瘤和其他异常组织分割的有效性。我们利用大规模的公共和私人数据集评估这些纹理和相关强度特征,以有效地描绘肿瘤核心内部和周围的多个异常组织,以及中风病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative MR Image Analysis for Brian Tumor.

Quantitative MR Image Analysis for Brian Tumor.

Quantitative MR Image Analysis for Brian Tumor.

Quantitative MR Image Analysis for Brian Tumor.

This paper presents an integrated quantitative MR image analysis framework to include all necessary steps such as MRI inhomogeneity correction, feature extraction, multiclass feature selection and multimodality abnormal brain tissue segmentation respectively. We first obtain mathematical algorithm to compute a novel Generalized multifractional Brownian motion (GmBm) texture feature. We then demonstrate efficacy of multiple multiresolution texture features including regular fractal dimension (FD) texture, and stochastic texture such as multifractional Brownian motion (mBm) and GmBm features for robust tumor and other abnormal tissue segmentation in brain MRI. We evaluate these texture and associated intensity features to effectively delineate multiple abnormal tissues within and around the tumor core, and stroke lesions using large scale public and private datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信