纤层蛋白A/C心肌病:个性化医疗的前沿。

Gianfranco Sinagra, Matteo Dal Ferro, Marco Merlo
{"title":"纤层蛋白A/C心肌病:个性化医疗的前沿。","authors":"Gianfranco Sinagra, Matteo Dal Ferro, Marco Merlo","doi":"10.1161/CIRCGENETICS.117.002004","DOIUrl":null,"url":null,"abstract":"Dilated cardiomyopathy (DCM) has a prevalence currently estimated as high as 1:250/1:500 and affects mostly young working-age people.1 Despite recent advances in medical and device therapies, the prognosis of DCM has been significantly improved in last decades,2 heart failure or sudden deaths, hospitalizations, need of heart transplantation, and morbidity rates remain relatively high and unpredictable.3 Consequently, more accurate risk stratification is still a critical and unmet issue.\n\nSee Article by Nishiuchi et al \n\nGenetic characterization is gaining a prominent role in personalizing DCM prognostication. In the past, the proportion of patients with genetically determined DCM has been substantially underestimated because of variable clinical presentation, incomplete disease penetrance, and the lack of specific phenotypes. However, recent series using genetic screening suggest that ≤40% of DCM is genetically determined.4 To date, >50 genes have been implicated in DCM.5 Nevertheless, genotype–phenotype interactions still represent a challenge for translational research and cardiology. In fact, genotype information often does not have a known corresponding specific clinical phenotype. In particular, the clinical management of relatives carrying likely or possibly pathogenic mutations without overt phenotype remains currently uncertain in the specific setting of DCM.\n\nIn this field, LMNA had always represented the more investigated gene with several prospective and retrospective studies.6–8 Because of the association with a relatively high incidence of sudden cardiac death or major ventricular arrhythmias, even before development of systolic left ventricular dysfunction, LMNA mutations represent the only genetic background in DCM that change clinical choices such as the implantable cardioverter defibrillator therapy in …","PeriodicalId":10277,"journal":{"name":"Circulation: Cardiovascular Genetics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.117.002004","citationCount":"10","resultStr":"{\"title\":\"Lamin A/C Cardiomyopathy: Cutting Edge to Personalized Medicine.\",\"authors\":\"Gianfranco Sinagra, Matteo Dal Ferro, Marco Merlo\",\"doi\":\"10.1161/CIRCGENETICS.117.002004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dilated cardiomyopathy (DCM) has a prevalence currently estimated as high as 1:250/1:500 and affects mostly young working-age people.1 Despite recent advances in medical and device therapies, the prognosis of DCM has been significantly improved in last decades,2 heart failure or sudden deaths, hospitalizations, need of heart transplantation, and morbidity rates remain relatively high and unpredictable.3 Consequently, more accurate risk stratification is still a critical and unmet issue.\\n\\nSee Article by Nishiuchi et al \\n\\nGenetic characterization is gaining a prominent role in personalizing DCM prognostication. In the past, the proportion of patients with genetically determined DCM has been substantially underestimated because of variable clinical presentation, incomplete disease penetrance, and the lack of specific phenotypes. However, recent series using genetic screening suggest that ≤40% of DCM is genetically determined.4 To date, >50 genes have been implicated in DCM.5 Nevertheless, genotype–phenotype interactions still represent a challenge for translational research and cardiology. In fact, genotype information often does not have a known corresponding specific clinical phenotype. In particular, the clinical management of relatives carrying likely or possibly pathogenic mutations without overt phenotype remains currently uncertain in the specific setting of DCM.\\n\\nIn this field, LMNA had always represented the more investigated gene with several prospective and retrospective studies.6–8 Because of the association with a relatively high incidence of sudden cardiac death or major ventricular arrhythmias, even before development of systolic left ventricular dysfunction, LMNA mutations represent the only genetic background in DCM that change clinical choices such as the implantable cardioverter defibrillator therapy in …\",\"PeriodicalId\":10277,\"journal\":{\"name\":\"Circulation: Cardiovascular Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.117.002004\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.117.002004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.117.002004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lamin A/C Cardiomyopathy: Cutting Edge to Personalized Medicine.
Dilated cardiomyopathy (DCM) has a prevalence currently estimated as high as 1:250/1:500 and affects mostly young working-age people.1 Despite recent advances in medical and device therapies, the prognosis of DCM has been significantly improved in last decades,2 heart failure or sudden deaths, hospitalizations, need of heart transplantation, and morbidity rates remain relatively high and unpredictable.3 Consequently, more accurate risk stratification is still a critical and unmet issue. See Article by Nishiuchi et al Genetic characterization is gaining a prominent role in personalizing DCM prognostication. In the past, the proportion of patients with genetically determined DCM has been substantially underestimated because of variable clinical presentation, incomplete disease penetrance, and the lack of specific phenotypes. However, recent series using genetic screening suggest that ≤40% of DCM is genetically determined.4 To date, >50 genes have been implicated in DCM.5 Nevertheless, genotype–phenotype interactions still represent a challenge for translational research and cardiology. In fact, genotype information often does not have a known corresponding specific clinical phenotype. In particular, the clinical management of relatives carrying likely or possibly pathogenic mutations without overt phenotype remains currently uncertain in the specific setting of DCM. In this field, LMNA had always represented the more investigated gene with several prospective and retrospective studies.6–8 Because of the association with a relatively high incidence of sudden cardiac death or major ventricular arrhythmias, even before development of systolic left ventricular dysfunction, LMNA mutations represent the only genetic background in DCM that change clinical choices such as the implantable cardioverter defibrillator therapy in …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation: Cardiovascular Genetics
Circulation: Cardiovascular Genetics CARDIAC & CARDIOVASCULAR SYSTEMS-GENETICS & HEREDITY
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信