基于近似消息传递的稀疏信号聚类算法。

Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther
{"title":"基于近似消息传递的稀疏信号聚类算法。","authors":"Mohammad Shekaramiz,&nbsp;Todd K Moon,&nbsp;Jacob H Gunther","doi":"10.1109/UEMCON.2016.7777899","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, we proposed an algorithm for the single measurement vector problem where the underlying sparse signal has an unknown clustered pattern. The algorithm is essentially a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. Treating the cluster pattern is controlled via a knob that accounts for the amount of clumpiness in the solution. The parameter corresponding to the knob is learned using expectation-maximization algorithm. In this paper, we provide further study by comparing the performance of our algorithm with other algorithms in terms of support recovery, mean-squared error, and an example in image reconstruction in a compressed sensing fashion.</p>","PeriodicalId":92155,"journal":{"name":"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/UEMCON.2016.7777899","citationCount":"11","resultStr":"{\"title\":\"AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.\",\"authors\":\"Mohammad Shekaramiz,&nbsp;Todd K Moon,&nbsp;Jacob H Gunther\",\"doi\":\"10.1109/UEMCON.2016.7777899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, we proposed an algorithm for the single measurement vector problem where the underlying sparse signal has an unknown clustered pattern. The algorithm is essentially a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. Treating the cluster pattern is controlled via a knob that accounts for the amount of clumpiness in the solution. The parameter corresponding to the knob is learned using expectation-maximization algorithm. In this paper, we provide further study by comparing the performance of our algorithm with other algorithms in terms of support recovery, mean-squared error, and an example in image reconstruction in a compressed sensing fashion.</p>\",\"PeriodicalId\":92155,\"journal\":{\"name\":\"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual\",\"volume\":\"2016 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/UEMCON.2016.7777899\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON.2016.7777899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2016.7777899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近,我们提出了一种针对单个测量向量问题的算法,其中底层稀疏信号具有未知的聚类模式。处理簇状图案是通过一个旋钮来控制的,这个旋钮决定了溶液中团块的数量。旋钮对应的参数采用期望最大化算法学习。在本文中,我们通过比较我们的算法与其他算法在支持度恢复、均方误差方面的性能,并以压缩感知方式的图像重建为例,进行了进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.

AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.

AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.

AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing.

Recently, we proposed an algorithm for the single measurement vector problem where the underlying sparse signal has an unknown clustered pattern. The algorithm is essentially a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. Treating the cluster pattern is controlled via a knob that accounts for the amount of clumpiness in the solution. The parameter corresponding to the knob is learned using expectation-maximization algorithm. In this paper, we provide further study by comparing the performance of our algorithm with other algorithms in terms of support recovery, mean-squared error, and an example in image reconstruction in a compressed sensing fashion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信