{"title":"多测量向量的块稀疏性。","authors":"Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther","doi":"10.1109/DSP-SPE.2015.7369556","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the compressive sensing (CS) theory, it is possible to recover signals, which are either compressible or sparse under some suitable basis, via a small number of non-adaptive linear measurements. In this paper, we investigate recovering of block-sparse signals via multiple measurement vectors (MMVs) in the presence of noise. In this case, we consider one of the existing algorithms which provides a satisfactory estimate in terms of minimum mean-squared error but a non-sparse solution. Here, the algorithm is first modified to result in sparse solutions. Then, further modification is performed to account for the unknown block sparsity structure in the solution, as well. The performance of the proposed algorithm is demonstrated by experimental simulations and comparisons with some other algorithms for the sparse recovery problem.</p>","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"2015 ","pages":"220-225"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/DSP-SPE.2015.7369556","citationCount":"7","resultStr":"{\"title\":\"ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS.\",\"authors\":\"Mohammad Shekaramiz, Todd K Moon, Jacob H Gunther\",\"doi\":\"10.1109/DSP-SPE.2015.7369556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on the compressive sensing (CS) theory, it is possible to recover signals, which are either compressible or sparse under some suitable basis, via a small number of non-adaptive linear measurements. In this paper, we investigate recovering of block-sparse signals via multiple measurement vectors (MMVs) in the presence of noise. In this case, we consider one of the existing algorithms which provides a satisfactory estimate in terms of minimum mean-squared error but a non-sparse solution. Here, the algorithm is first modified to result in sparse solutions. Then, further modification is performed to account for the unknown block sparsity structure in the solution, as well. The performance of the proposed algorithm is demonstrated by experimental simulations and comparisons with some other algorithms for the sparse recovery problem.</p>\",\"PeriodicalId\":91992,\"journal\":{\"name\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"volume\":\"2015 \",\"pages\":\"220-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/DSP-SPE.2015.7369556\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP-SPE.2015.7369556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS.
Based on the compressive sensing (CS) theory, it is possible to recover signals, which are either compressible or sparse under some suitable basis, via a small number of non-adaptive linear measurements. In this paper, we investigate recovering of block-sparse signals via multiple measurement vectors (MMVs) in the presence of noise. In this case, we consider one of the existing algorithms which provides a satisfactory estimate in terms of minimum mean-squared error but a non-sparse solution. Here, the algorithm is first modified to result in sparse solutions. Then, further modification is performed to account for the unknown block sparsity structure in the solution, as well. The performance of the proposed algorithm is demonstrated by experimental simulations and comparisons with some other algorithms for the sparse recovery problem.