使用七桥癌症基因组云访问和分析数pb的癌症数据

Q1 Biochemistry, Genetics and Molecular Biology
Raunaq Malhotra, Isheeta Seth, Erik Lehnert, Jing Zhao, Gaurav Kaushik, Elizabeth H. Williams, Anurag Sethi, Brandi N. Davis-Dusenbery
{"title":"使用七桥癌症基因组云访问和分析数pb的癌症数据","authors":"Raunaq Malhotra,&nbsp;Isheeta Seth,&nbsp;Erik Lehnert,&nbsp;Jing Zhao,&nbsp;Gaurav Kaushik,&nbsp;Elizabeth H. Williams,&nbsp;Anurag Sethi,&nbsp;Brandi N. Davis-Dusenbery","doi":"10.1002/cpbi.39","DOIUrl":null,"url":null,"abstract":"<p>Next-generation sequencing has produced petabytes of data, but accessing and analyzing these data remain challenging. Traditionally, researchers investigating public datasets like The Cancer Genome Atlas (TCGA) would download the data to a high-performance cluster, which could take several weeks even with a highly optimized network connection. The National Cancer Institute (NCI) initiated the Cancer Genomics Cloud Pilots program to provide researchers with the resources to process data with cloud computational resources. We present protocols using one of these Cloud Pilots, the Seven Bridges Cancer Genomics Cloud (CGC), to find and query public datasets, bring your own data to the CGC, analyze data using standard or custom workflows, and benchmark tools for accuracy with interactive analysis features. These protocols demonstrate that the CGC is a data-analysis ecosystem that fully empowers researchers with a variety of areas of expertise and interests to collaborate in the analysis of petabytes of data. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpbi.39","citationCount":"4","resultStr":"{\"title\":\"Using the Seven Bridges Cancer Genomics Cloud to Access and Analyze Petabytes of Cancer Data\",\"authors\":\"Raunaq Malhotra,&nbsp;Isheeta Seth,&nbsp;Erik Lehnert,&nbsp;Jing Zhao,&nbsp;Gaurav Kaushik,&nbsp;Elizabeth H. Williams,&nbsp;Anurag Sethi,&nbsp;Brandi N. Davis-Dusenbery\",\"doi\":\"10.1002/cpbi.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Next-generation sequencing has produced petabytes of data, but accessing and analyzing these data remain challenging. Traditionally, researchers investigating public datasets like The Cancer Genome Atlas (TCGA) would download the data to a high-performance cluster, which could take several weeks even with a highly optimized network connection. The National Cancer Institute (NCI) initiated the Cancer Genomics Cloud Pilots program to provide researchers with the resources to process data with cloud computational resources. We present protocols using one of these Cloud Pilots, the Seven Bridges Cancer Genomics Cloud (CGC), to find and query public datasets, bring your own data to the CGC, analyze data using standard or custom workflows, and benchmark tools for accuracy with interactive analysis features. These protocols demonstrate that the CGC is a data-analysis ecosystem that fully empowers researchers with a variety of areas of expertise and interests to collaborate in the analysis of petabytes of data. © 2017 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10958,\"journal\":{\"name\":\"Current protocols in bioinformatics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpbi.39\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

下一代测序已经产生了数拍字节的数据,但访问和分析这些数据仍然具有挑战性。传统上,研究人员调查像癌症基因组图谱(TCGA)这样的公共数据集,需要将数据下载到高性能集群,即使在高度优化的网络连接下,这也需要几周的时间。美国国家癌症研究所(NCI)启动了癌症基因组学云试点项目,为研究人员提供使用云计算资源处理数据的资源。我们提出了使用这些云试点之一的协议,七桥癌症基因组云(CGC),查找和查询公共数据集,将您自己的数据带到CGC,使用标准或自定义工作流程分析数据,以及具有交互式分析功能的准确性基准工具。这些协议表明,CGC是一个数据分析生态系统,充分授权具有各种专业知识和兴趣领域的研究人员在pb级数据分析中进行合作。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using the Seven Bridges Cancer Genomics Cloud to Access and Analyze Petabytes of Cancer Data

Using the Seven Bridges Cancer Genomics Cloud to Access and Analyze Petabytes of Cancer Data

Using the Seven Bridges Cancer Genomics Cloud to Access and Analyze Petabytes of Cancer Data

Next-generation sequencing has produced petabytes of data, but accessing and analyzing these data remain challenging. Traditionally, researchers investigating public datasets like The Cancer Genome Atlas (TCGA) would download the data to a high-performance cluster, which could take several weeks even with a highly optimized network connection. The National Cancer Institute (NCI) initiated the Cancer Genomics Cloud Pilots program to provide researchers with the resources to process data with cloud computational resources. We present protocols using one of these Cloud Pilots, the Seven Bridges Cancer Genomics Cloud (CGC), to find and query public datasets, bring your own data to the CGC, analyze data using standard or custom workflows, and benchmark tools for accuracy with interactive analysis features. These protocols demonstrate that the CGC is a data-analysis ecosystem that fully empowers researchers with a variety of areas of expertise and interests to collaborate in the analysis of petabytes of data. © 2017 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信