Steven G Schauer, Michael D April, Jason F Naylor, Joshua J Oliver, Cord W Cunningham, Andrew D Fisher, Russ S Kotwal
{"title":"对国防部联合创伤系统院前创伤登记处数据的描述性分析。","authors":"Steven G Schauer, Michael D April, Jason F Naylor, Joshua J Oliver, Cord W Cunningham, Andrew D Fisher, Russ S Kotwal","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The active battlefield is an environment of chaos and confusion. Depending on the scale of combat, the chaos and confusion often extend into the prehospital combat setting with multiple personnel and units involved in the chain of care of casualties. The chaos of the prehospital combat setting has led to limitations in the availability of data for performance improvement and research. The Department of Defense (DoD) Joint Trauma System (JTS) Prehospital Trauma Registry (PHTR) was developed in conjunction with the updated Tactical Combat Casualty Care (TCCC) card and a TCCC after action report (AAR), and currently serves as the prehospital repository and module of the DoD Trauma Registry (DoDTR). We conducted a descriptive analysis of data from the DoDTR PHTR.</p><p><strong>Methods: </strong>The JTS collected trauma-associated data which comprise the PHTR are consolidated from TCCC cards and TCCC AARs. Where possible (requires 2 patient identifiers), JTS linked data from the PHTR module to other modules in the DoDTR to maximize availability of prehospital data and gain additional information regarding clinical outcomes.</p><p><strong>Results: </strong>From January 2013 through September 2014, there were 705 patients available for research, of which 94.8% (668/705) had data from TCCC AARs, 3.3% (23/705) had data from TCCC cards, and 2.0% (14/705) had data available from DoDTR collection forms. There were one or more of the following data points per subject: pulse rate (77.4%, n=546), blood pressure (75.9%, n=535), respiratory rate (76.5%, n=539), pulse oximetry (61.8%, n=436), mental status (96.0%, n=677) and pain score (24.5%, n=173). Only 42.4% (647/1,527) of vital sign metrics had an associated time stamp. Documented interventions included limb tourniquets, of which only 27.3% (113/414) had an associated documentation of application time. Only 27.0% (190/705) of patients in the PHTR could be linked to the DoDTR due to missing identifiers.</p><p><strong>Conclusions: </strong>The PHTR data capture was suboptimal with many patients lacking documentation of vital signs and procedural details. Future efforts to improve prehospital data capture will require ownership and enforcement by unit leadership.</p>","PeriodicalId":88789,"journal":{"name":"U.S. Army Medical Department journal","volume":" 3-17","pages":"92-97"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A descriptive analysis of data from the Department of Defense Joint Trauma System Prehospital Trauma Registry.\",\"authors\":\"Steven G Schauer, Michael D April, Jason F Naylor, Joshua J Oliver, Cord W Cunningham, Andrew D Fisher, Russ S Kotwal\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The active battlefield is an environment of chaos and confusion. Depending on the scale of combat, the chaos and confusion often extend into the prehospital combat setting with multiple personnel and units involved in the chain of care of casualties. The chaos of the prehospital combat setting has led to limitations in the availability of data for performance improvement and research. The Department of Defense (DoD) Joint Trauma System (JTS) Prehospital Trauma Registry (PHTR) was developed in conjunction with the updated Tactical Combat Casualty Care (TCCC) card and a TCCC after action report (AAR), and currently serves as the prehospital repository and module of the DoD Trauma Registry (DoDTR). We conducted a descriptive analysis of data from the DoDTR PHTR.</p><p><strong>Methods: </strong>The JTS collected trauma-associated data which comprise the PHTR are consolidated from TCCC cards and TCCC AARs. Where possible (requires 2 patient identifiers), JTS linked data from the PHTR module to other modules in the DoDTR to maximize availability of prehospital data and gain additional information regarding clinical outcomes.</p><p><strong>Results: </strong>From January 2013 through September 2014, there were 705 patients available for research, of which 94.8% (668/705) had data from TCCC AARs, 3.3% (23/705) had data from TCCC cards, and 2.0% (14/705) had data available from DoDTR collection forms. There were one or more of the following data points per subject: pulse rate (77.4%, n=546), blood pressure (75.9%, n=535), respiratory rate (76.5%, n=539), pulse oximetry (61.8%, n=436), mental status (96.0%, n=677) and pain score (24.5%, n=173). Only 42.4% (647/1,527) of vital sign metrics had an associated time stamp. Documented interventions included limb tourniquets, of which only 27.3% (113/414) had an associated documentation of application time. Only 27.0% (190/705) of patients in the PHTR could be linked to the DoDTR due to missing identifiers.</p><p><strong>Conclusions: </strong>The PHTR data capture was suboptimal with many patients lacking documentation of vital signs and procedural details. Future efforts to improve prehospital data capture will require ownership and enforcement by unit leadership.</p>\",\"PeriodicalId\":88789,\"journal\":{\"name\":\"U.S. Army Medical Department journal\",\"volume\":\" 3-17\",\"pages\":\"92-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"U.S. Army Medical Department journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.S. Army Medical Department journal","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A descriptive analysis of data from the Department of Defense Joint Trauma System Prehospital Trauma Registry.
The active battlefield is an environment of chaos and confusion. Depending on the scale of combat, the chaos and confusion often extend into the prehospital combat setting with multiple personnel and units involved in the chain of care of casualties. The chaos of the prehospital combat setting has led to limitations in the availability of data for performance improvement and research. The Department of Defense (DoD) Joint Trauma System (JTS) Prehospital Trauma Registry (PHTR) was developed in conjunction with the updated Tactical Combat Casualty Care (TCCC) card and a TCCC after action report (AAR), and currently serves as the prehospital repository and module of the DoD Trauma Registry (DoDTR). We conducted a descriptive analysis of data from the DoDTR PHTR.
Methods: The JTS collected trauma-associated data which comprise the PHTR are consolidated from TCCC cards and TCCC AARs. Where possible (requires 2 patient identifiers), JTS linked data from the PHTR module to other modules in the DoDTR to maximize availability of prehospital data and gain additional information regarding clinical outcomes.
Results: From January 2013 through September 2014, there were 705 patients available for research, of which 94.8% (668/705) had data from TCCC AARs, 3.3% (23/705) had data from TCCC cards, and 2.0% (14/705) had data available from DoDTR collection forms. There were one or more of the following data points per subject: pulse rate (77.4%, n=546), blood pressure (75.9%, n=535), respiratory rate (76.5%, n=539), pulse oximetry (61.8%, n=436), mental status (96.0%, n=677) and pain score (24.5%, n=173). Only 42.4% (647/1,527) of vital sign metrics had an associated time stamp. Documented interventions included limb tourniquets, of which only 27.3% (113/414) had an associated documentation of application time. Only 27.0% (190/705) of patients in the PHTR could be linked to the DoDTR due to missing identifiers.
Conclusions: The PHTR data capture was suboptimal with many patients lacking documentation of vital signs and procedural details. Future efforts to improve prehospital data capture will require ownership and enforcement by unit leadership.