Roselle Gélinas, Nabil El Khoury, Marie-A Chaix, Claudine Beauchamp, Azadeh Alikashani, Nathalie Ethier, Gabrielle Boucher, Louis Villeneuve, Laura Robb, Frédéric Latour, Blandine Mondesert, Lena Rivard, Philippe Goyette, Mario Talajic, Céline Fiset, John David Rioux
{"title":"人类诱导多能干细胞衍生的心肌细胞模型的特性及其变异致病性研究:KCNJ2突变的验证。","authors":"Roselle Gélinas, Nabil El Khoury, Marie-A Chaix, Claudine Beauchamp, Azadeh Alikashani, Nathalie Ethier, Gabrielle Boucher, Louis Villeneuve, Laura Robb, Frédéric Latour, Blandine Mondesert, Lena Rivard, Philippe Goyette, Mario Talajic, Céline Fiset, John David Rioux","doi":"10.1161/CIRCGENETICS.117.001755","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-QT syndrome is a potentially fatal condition for which 30% of patients are without a genetically confirmed diagnosis. Rapid identification of causal mutations is thus a priority to avoid at-risk situations that can lead to fatal cardiac events. Massively parallel sequencing technologies are useful for the identification of sequence variants; however, electrophysiological testing of newly identified variants is crucial to demonstrate causality. Long-QT syndrome could, therefore, benefit from having a standardized platform for functional characterization of candidate variants in the physiological context of human cardiomyocytes.</p><p><strong>Methods and results: </strong>Using a variant in Kir2.1 (Gly52Val) revealed by whole-exome sequencing in a patient presenting with symptoms of long-QT syndrome as a proof of principle, we demonstrated that commercially available human induced pluripotent stem cell-derived cardiomyocytes are a powerful model for screening variants involved in genetic cardiac diseases. Immunohistochemistry experiments and whole-cell current recordings in human embryonic kidney cells expressing the wild-type or the mutant Kir2.1 demonstrated that Kir2.1-52V alters channel cellular trafficking and fails to form a functional channel. Using human induced pluripotent stem cell-derived cardiomyocytes, we not only confirmed these results but also further demonstrated that Kir2.1-52V is associated with a dramatic prolongation of action potential duration with evidence of arrhythmic activity, parameters which could not have been studied using human embryonic kidney cells.</p><p><strong>Conclusions: </strong>Our study confirms the pathogenicity of Kir2.1-52V in 1 patient with long-QT syndrome and also supports the use of isogenic human induced pluripotent stem cell-derived cardiomyocytes as a physiologically relevant model for the screening of variants of unknown function.</p>","PeriodicalId":10277,"journal":{"name":"Circulation: Cardiovascular Genetics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.117.001755","citationCount":"16","resultStr":"{\"title\":\"Characterization of a Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for the Study of Variant Pathogenicity: Validation of a <i>KCNJ2</i> Mutation.\",\"authors\":\"Roselle Gélinas, Nabil El Khoury, Marie-A Chaix, Claudine Beauchamp, Azadeh Alikashani, Nathalie Ethier, Gabrielle Boucher, Louis Villeneuve, Laura Robb, Frédéric Latour, Blandine Mondesert, Lena Rivard, Philippe Goyette, Mario Talajic, Céline Fiset, John David Rioux\",\"doi\":\"10.1161/CIRCGENETICS.117.001755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Long-QT syndrome is a potentially fatal condition for which 30% of patients are without a genetically confirmed diagnosis. Rapid identification of causal mutations is thus a priority to avoid at-risk situations that can lead to fatal cardiac events. Massively parallel sequencing technologies are useful for the identification of sequence variants; however, electrophysiological testing of newly identified variants is crucial to demonstrate causality. Long-QT syndrome could, therefore, benefit from having a standardized platform for functional characterization of candidate variants in the physiological context of human cardiomyocytes.</p><p><strong>Methods and results: </strong>Using a variant in Kir2.1 (Gly52Val) revealed by whole-exome sequencing in a patient presenting with symptoms of long-QT syndrome as a proof of principle, we demonstrated that commercially available human induced pluripotent stem cell-derived cardiomyocytes are a powerful model for screening variants involved in genetic cardiac diseases. Immunohistochemistry experiments and whole-cell current recordings in human embryonic kidney cells expressing the wild-type or the mutant Kir2.1 demonstrated that Kir2.1-52V alters channel cellular trafficking and fails to form a functional channel. Using human induced pluripotent stem cell-derived cardiomyocytes, we not only confirmed these results but also further demonstrated that Kir2.1-52V is associated with a dramatic prolongation of action potential duration with evidence of arrhythmic activity, parameters which could not have been studied using human embryonic kidney cells.</p><p><strong>Conclusions: </strong>Our study confirms the pathogenicity of Kir2.1-52V in 1 patient with long-QT syndrome and also supports the use of isogenic human induced pluripotent stem cell-derived cardiomyocytes as a physiologically relevant model for the screening of variants of unknown function.</p>\",\"PeriodicalId\":10277,\"journal\":{\"name\":\"Circulation: Cardiovascular Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.117.001755\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.117.001755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.117.001755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of a Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for the Study of Variant Pathogenicity: Validation of a KCNJ2 Mutation.
Background: Long-QT syndrome is a potentially fatal condition for which 30% of patients are without a genetically confirmed diagnosis. Rapid identification of causal mutations is thus a priority to avoid at-risk situations that can lead to fatal cardiac events. Massively parallel sequencing technologies are useful for the identification of sequence variants; however, electrophysiological testing of newly identified variants is crucial to demonstrate causality. Long-QT syndrome could, therefore, benefit from having a standardized platform for functional characterization of candidate variants in the physiological context of human cardiomyocytes.
Methods and results: Using a variant in Kir2.1 (Gly52Val) revealed by whole-exome sequencing in a patient presenting with symptoms of long-QT syndrome as a proof of principle, we demonstrated that commercially available human induced pluripotent stem cell-derived cardiomyocytes are a powerful model for screening variants involved in genetic cardiac diseases. Immunohistochemistry experiments and whole-cell current recordings in human embryonic kidney cells expressing the wild-type or the mutant Kir2.1 demonstrated that Kir2.1-52V alters channel cellular trafficking and fails to form a functional channel. Using human induced pluripotent stem cell-derived cardiomyocytes, we not only confirmed these results but also further demonstrated that Kir2.1-52V is associated with a dramatic prolongation of action potential duration with evidence of arrhythmic activity, parameters which could not have been studied using human embryonic kidney cells.
Conclusions: Our study confirms the pathogenicity of Kir2.1-52V in 1 patient with long-QT syndrome and also supports the use of isogenic human induced pluripotent stem cell-derived cardiomyocytes as a physiologically relevant model for the screening of variants of unknown function.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease.