Cindy Shambaugh, Sarieh Azshirvani, Li Yu, Jared Pache, Stacie L Lambert, Fengrong Zuo, Mark T Esser
{"title":"高通量呼吸道合胞病毒荧光病灶微中和试验的建立。","authors":"Cindy Shambaugh, Sarieh Azshirvani, Li Yu, Jared Pache, Stacie L Lambert, Fengrong Zuo, Mark T Esser","doi":"10.1128/CVI.00225-17","DOIUrl":null,"url":null,"abstract":"<p><p>Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log<sub>2</sub>; linear over a range of 4.27 to 9.65 log<sub>2</sub> 50% inhibitory concentration (IC<sub>50</sub>); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (<i>n</i> = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00225-17","citationCount":"18","resultStr":"{\"title\":\"Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay.\",\"authors\":\"Cindy Shambaugh, Sarieh Azshirvani, Li Yu, Jared Pache, Stacie L Lambert, Fengrong Zuo, Mark T Esser\",\"doi\":\"10.1128/CVI.00225-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log<sub>2</sub>; linear over a range of 4.27 to 9.65 log<sub>2</sub> 50% inhibitory concentration (IC<sub>50</sub>); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (<i>n</i> = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":\"24 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/CVI.00225-17\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00225-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00225-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay.
Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log2; linear over a range of 4.27 to 9.65 log2 50% inhibitory concentration (IC50); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (n = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.