{"title":"口咽特定对象生物力学建模:迈向语音生成。","authors":"","doi":"10.1080/21681163.2015.1033756","DOIUrl":null,"url":null,"abstract":"<p><p>Biomechanical models of the oropharynx are beneficial to treatment planning of speech impediments by providing valuable insight into the speech function such as motor control. In this paper, we develop a subject-specific model of the oropharynx and investigate its utility in speech production. Our approach adapts a generic tongue-jaw-hyoid model (Stavness et al. 2011) to fit and track dynamic volumetric MRI data of a normal speaker, subsequently coupled to a source-filter based acoustic synthesizer. We demonstrate our model's ability to track tongue tissue motion, simulate plausible muscle activation patterns, as well as generate acoustic results that have comparable spectral features to the associated recorded audio. Finally, we propose a method to adjust the spatial resolution of our subject-specific tongue model to match the fidelity level of our MRI data and speech synthesizer. Our findings suggest that a higher resolution tongue model - using similar muscle fibre definition - does not show a significant improvement in acoustic performance, for our speech utterance and at this level of fidelity; however we believe that our approach enables further refinements of the muscle fibres suitable for studying longer speech sequences and finer muscle innervation using higher resolution dynamic data.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699225/pdf/nihms699796.pdf","citationCount":"0","resultStr":"{\"title\":\"Subject-Specific Biomechanical Modelling of the Oropharynx: Towards Speech Production.\",\"authors\":\"\",\"doi\":\"10.1080/21681163.2015.1033756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomechanical models of the oropharynx are beneficial to treatment planning of speech impediments by providing valuable insight into the speech function such as motor control. In this paper, we develop a subject-specific model of the oropharynx and investigate its utility in speech production. Our approach adapts a generic tongue-jaw-hyoid model (Stavness et al. 2011) to fit and track dynamic volumetric MRI data of a normal speaker, subsequently coupled to a source-filter based acoustic synthesizer. We demonstrate our model's ability to track tongue tissue motion, simulate plausible muscle activation patterns, as well as generate acoustic results that have comparable spectral features to the associated recorded audio. Finally, we propose a method to adjust the spatial resolution of our subject-specific tongue model to match the fidelity level of our MRI data and speech synthesizer. Our findings suggest that a higher resolution tongue model - using similar muscle fibre definition - does not show a significant improvement in acoustic performance, for our speech utterance and at this level of fidelity; however we believe that our approach enables further refinements of the muscle fibres suitable for studying longer speech sequences and finer muscle innervation using higher resolution dynamic data.</p>\",\"PeriodicalId\":51800,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699225/pdf/nihms699796.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681163.2015.1033756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2015.1033756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/5/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Subject-Specific Biomechanical Modelling of the Oropharynx: Towards Speech Production.
Biomechanical models of the oropharynx are beneficial to treatment planning of speech impediments by providing valuable insight into the speech function such as motor control. In this paper, we develop a subject-specific model of the oropharynx and investigate its utility in speech production. Our approach adapts a generic tongue-jaw-hyoid model (Stavness et al. 2011) to fit and track dynamic volumetric MRI data of a normal speaker, subsequently coupled to a source-filter based acoustic synthesizer. We demonstrate our model's ability to track tongue tissue motion, simulate plausible muscle activation patterns, as well as generate acoustic results that have comparable spectral features to the associated recorded audio. Finally, we propose a method to adjust the spatial resolution of our subject-specific tongue model to match the fidelity level of our MRI data and speech synthesizer. Our findings suggest that a higher resolution tongue model - using similar muscle fibre definition - does not show a significant improvement in acoustic performance, for our speech utterance and at this level of fidelity; however we believe that our approach enables further refinements of the muscle fibres suitable for studying longer speech sequences and finer muscle innervation using higher resolution dynamic data.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.