{"title":"AFM纳米压痕对生物细胞(人肝癌)粘附作用的研究。","authors":"Xinyao Zhu, Nan Zhang, Zuobin Wang, X Liu","doi":"10.1007/s12213-016-0089-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we presented an investigation of mechanical properties by AFM nanoindentation on human hepatocellular carcinoma cells treated with fullerenol for 24, 48 and 72 h. AFM nanoindentation was routinely applied to investigate the morphology and biomechanical properties of living carcinoma cells, and adhesion phenomena (negative force) were detected in the obtained force-displacement curves. Conventionally, Hertz contact model has been widely used for determination of cell elasticity, however this contact model cannot account for adhesion. Alternatively, JKR contact model, as expected for adhesion circumstance, has been applied to fit the obtained force-displacement curves. In this investigation, we have derived both the work of adhesion and the elastic modulus of biological cells (human hepatocellular carcinoma) under fullerenol treatment. The results show that the chosen JKR model can provide better fitting results than Hertz contact model. The results show that both Young's modulus and work of adhesion exhibit significant variation as the treatment time increases. The calculated mechanical properties of elastic modulus and work of adhesion can be used as an effective bio-index to evaluate the effects of fullerenol or other anticancer agents on cancer cells and thus to provide insight into cancer progression in the treatment.</p>","PeriodicalId":44493,"journal":{"name":"Journal of Micro-Bio Robotics","volume":"11 1","pages":"47-55"},"PeriodicalIF":1.6000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12213-016-0089-8","citationCount":"8","resultStr":"{\"title\":\"Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by <i>AFM</i> nanoindentation.\",\"authors\":\"Xinyao Zhu, Nan Zhang, Zuobin Wang, X Liu\",\"doi\":\"10.1007/s12213-016-0089-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we presented an investigation of mechanical properties by AFM nanoindentation on human hepatocellular carcinoma cells treated with fullerenol for 24, 48 and 72 h. AFM nanoindentation was routinely applied to investigate the morphology and biomechanical properties of living carcinoma cells, and adhesion phenomena (negative force) were detected in the obtained force-displacement curves. Conventionally, Hertz contact model has been widely used for determination of cell elasticity, however this contact model cannot account for adhesion. Alternatively, JKR contact model, as expected for adhesion circumstance, has been applied to fit the obtained force-displacement curves. In this investigation, we have derived both the work of adhesion and the elastic modulus of biological cells (human hepatocellular carcinoma) under fullerenol treatment. The results show that the chosen JKR model can provide better fitting results than Hertz contact model. The results show that both Young's modulus and work of adhesion exhibit significant variation as the treatment time increases. The calculated mechanical properties of elastic modulus and work of adhesion can be used as an effective bio-index to evaluate the effects of fullerenol or other anticancer agents on cancer cells and thus to provide insight into cancer progression in the treatment.</p>\",\"PeriodicalId\":44493,\"journal\":{\"name\":\"Journal of Micro-Bio Robotics\",\"volume\":\"11 1\",\"pages\":\"47-55\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12213-016-0089-8\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro-Bio Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12213-016-0089-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro-Bio Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12213-016-0089-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by AFM nanoindentation.
In this study, we presented an investigation of mechanical properties by AFM nanoindentation on human hepatocellular carcinoma cells treated with fullerenol for 24, 48 and 72 h. AFM nanoindentation was routinely applied to investigate the morphology and biomechanical properties of living carcinoma cells, and adhesion phenomena (negative force) were detected in the obtained force-displacement curves. Conventionally, Hertz contact model has been widely used for determination of cell elasticity, however this contact model cannot account for adhesion. Alternatively, JKR contact model, as expected for adhesion circumstance, has been applied to fit the obtained force-displacement curves. In this investigation, we have derived both the work of adhesion and the elastic modulus of biological cells (human hepatocellular carcinoma) under fullerenol treatment. The results show that the chosen JKR model can provide better fitting results than Hertz contact model. The results show that both Young's modulus and work of adhesion exhibit significant variation as the treatment time increases. The calculated mechanical properties of elastic modulus and work of adhesion can be used as an effective bio-index to evaluate the effects of fullerenol or other anticancer agents on cancer cells and thus to provide insight into cancer progression in the treatment.
期刊介绍:
The Journal of Micro-Bio Robotics (JMBR) focuses on small-scale robotic systems, which could be also biologically inspired, integrated with biological entities, or used for biological or biomedical applications. The journal aims to report the significant progresses in such new research topics.
JMBR is devoted to the theory, experiments, and applications of micro/nano- and biotechnologies and small-scale robotics. It promotes both theoretical and practical engineering research based on the analysis and synthesis from the micro/nano level to the biological level of robotics. JMBR includes survey and research articles.
Authors are invited to submit their original research articles or review articles for publication consideration. All submissions will be peer reviewed subject to the standards of the journal. Manuscripts based on previously published conference papers must be extended substantially.