2017年CLEF风险试点任务:早期抑郁症检测的线性和循环模型。

CEUR workshop proceedings Pub Date : 2017-09-01 Epub Date: 2017-07-13
Farig Sadeque, Dongfang Xu, Steven Bethard
{"title":"2017年CLEF风险试点任务:早期抑郁症检测的线性和循环模型。","authors":"Farig Sadeque,&nbsp;Dongfang Xu,&nbsp;Steven Bethard","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The 2017 CLEF eRisk pilot task focuses on automatically detecting depression as early as possible from a users' posts to Reddit. In this paper we present the techniques employed for the University of Arizona team's participation in this early risk detection shared task. We leveraged external information beyond the small training set, including a preexisting depression lexicon and concepts from the Unified Medical Language System as features. For prediction, we used both sequential (recurrent neural network) and non-sequential (support vector machine) models. Our models perform decently on the test data, and the recurrent neural models perform better than the non-sequential support vector machines while using the same feature sets.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":"1866 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654552/pdf/nihms912392.pdf","citationCount":"0","resultStr":"{\"title\":\"UArizona at the CLEF eRisk 2017 Pilot Task: Linear and Recurrent Models for Early Depression Detection.\",\"authors\":\"Farig Sadeque,&nbsp;Dongfang Xu,&nbsp;Steven Bethard\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 2017 CLEF eRisk pilot task focuses on automatically detecting depression as early as possible from a users' posts to Reddit. In this paper we present the techniques employed for the University of Arizona team's participation in this early risk detection shared task. We leveraged external information beyond the small training set, including a preexisting depression lexicon and concepts from the Unified Medical Language System as features. For prediction, we used both sequential (recurrent neural network) and non-sequential (support vector machine) models. Our models perform decently on the test data, and the recurrent neural models perform better than the non-sequential support vector machines while using the same feature sets.</p>\",\"PeriodicalId\":72554,\"journal\":{\"name\":\"CEUR workshop proceedings\",\"volume\":\"1866 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654552/pdf/nihms912392.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEUR workshop proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2017年CLEF eRisk试点任务的重点是尽早从用户在Reddit上的帖子中自动检测抑郁症。在本文中,我们展示了亚利桑那大学团队参与这一早期风险检测共享任务所采用的技术。我们利用了小训练集之外的外部信息,包括先前存在的抑郁症词汇和统一医学语言系统的概念作为特征。对于预测,我们使用了顺序(循环神经网络)和非顺序(支持向量机)模型。我们的模型在测试数据上表现良好,并且在使用相同的特征集时,循环神经模型比非顺序支持向量机表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

UArizona at the CLEF eRisk 2017 Pilot Task: Linear and Recurrent Models for Early Depression Detection.

UArizona at the CLEF eRisk 2017 Pilot Task: Linear and Recurrent Models for Early Depression Detection.

The 2017 CLEF eRisk pilot task focuses on automatically detecting depression as early as possible from a users' posts to Reddit. In this paper we present the techniques employed for the University of Arizona team's participation in this early risk detection shared task. We leveraged external information beyond the small training set, including a preexisting depression lexicon and concepts from the Unified Medical Language System as features. For prediction, we used both sequential (recurrent neural network) and non-sequential (support vector machine) models. Our models perform decently on the test data, and the recurrent neural models perform better than the non-sequential support vector machines while using the same feature sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信