{"title":"在高维中防范虚假的发现。","authors":"Jianqing Fan, Wen-Xin Zhou","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many data-mining and statistical machine learning algorithms have been developed to select a subset of covariates to associate with a response variable. Spurious discoveries can easily arise in high-dimensional data analysis due to enormous possibilities of such selections. How can we know statistically our discoveries better than those by chance? In this paper, we define a measure of goodness of spurious fit, which shows how good a response variable can be fitted by an optimally selected subset of covariates under the null model, and propose a simple and effective LAMM algorithm to compute it. It coincides with the maximum spurious correlation for linear models and can be regarded as a generalized maximum spurious correlation. We derive the asymptotic distribution of such goodness of spurious fit for generalized linear models and <i>L</i><sub>1</sub>-regression. Such an asymptotic distribution depends on the sample size, ambient dimension, the number of variables used in the fit, and the covariance information. It can be consistently estimated by multiplier bootstrapping and used as a benchmark to guard against spurious discoveries. It can also be applied to model selection, which considers only candidate models with goodness of fits better than those by spurious fits. The theory and method are convincingly illustrated by simulated examples and an application to the binary outcomes from German Neuroblastoma Trials.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603346/pdf/nihms842539.pdf","citationCount":"0","resultStr":"{\"title\":\"Guarding against Spurious Discoveries in High Dimensions.\",\"authors\":\"Jianqing Fan, Wen-Xin Zhou\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many data-mining and statistical machine learning algorithms have been developed to select a subset of covariates to associate with a response variable. Spurious discoveries can easily arise in high-dimensional data analysis due to enormous possibilities of such selections. How can we know statistically our discoveries better than those by chance? In this paper, we define a measure of goodness of spurious fit, which shows how good a response variable can be fitted by an optimally selected subset of covariates under the null model, and propose a simple and effective LAMM algorithm to compute it. It coincides with the maximum spurious correlation for linear models and can be regarded as a generalized maximum spurious correlation. We derive the asymptotic distribution of such goodness of spurious fit for generalized linear models and <i>L</i><sub>1</sub>-regression. Such an asymptotic distribution depends on the sample size, ambient dimension, the number of variables used in the fit, and the covariance information. It can be consistently estimated by multiplier bootstrapping and used as a benchmark to guard against spurious discoveries. It can also be applied to model selection, which considers only candidate models with goodness of fits better than those by spurious fits. The theory and method are convincingly illustrated by simulated examples and an application to the binary outcomes from German Neuroblastoma Trials.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603346/pdf/nihms842539.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Guarding against Spurious Discoveries in High Dimensions.
Many data-mining and statistical machine learning algorithms have been developed to select a subset of covariates to associate with a response variable. Spurious discoveries can easily arise in high-dimensional data analysis due to enormous possibilities of such selections. How can we know statistically our discoveries better than those by chance? In this paper, we define a measure of goodness of spurious fit, which shows how good a response variable can be fitted by an optimally selected subset of covariates under the null model, and propose a simple and effective LAMM algorithm to compute it. It coincides with the maximum spurious correlation for linear models and can be regarded as a generalized maximum spurious correlation. We derive the asymptotic distribution of such goodness of spurious fit for generalized linear models and L1-regression. Such an asymptotic distribution depends on the sample size, ambient dimension, the number of variables used in the fit, and the covariance information. It can be consistently estimated by multiplier bootstrapping and used as a benchmark to guard against spurious discoveries. It can also be applied to model selection, which considers only candidate models with goodness of fits better than those by spurious fits. The theory and method are convincingly illustrated by simulated examples and an application to the binary outcomes from German Neuroblastoma Trials.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.