基于关联的多实体摘要。

Kalpa Gunaratna, Amir Hossein Yazdavar, Krishnaprasad Thirunarayan, Amit Sheth, Gong Cheng
{"title":"基于关联的多实体摘要。","authors":"Kalpa Gunaratna,&nbsp;Amir Hossein Yazdavar,&nbsp;Krishnaprasad Thirunarayan,&nbsp;Amit Sheth,&nbsp;Gong Cheng","doi":"10.24963/ijcai.2017/147","DOIUrl":null,"url":null,"abstract":"<p><p>Representing world knowledge in a machine processable format is important as entities and their descriptions have fueled tremendous growth in knowledge-rich information processing platforms, services, and systems. Prominent applications of knowledge graphs include search engines (e.g., Google Search and Microsoft Bing), email clients (e.g., Gmail), and intelligent personal assistants (e.g., Google Now, Amazon Echo, and Apple's Siri). In this paper, we present an approach that can summarize facts about a collection of entities by analyzing their relatedness in preference to summarizing each entity in isolation. Specifically, we generate informative entity summaries by selecting: (i) inter-entity facts that are similar and (ii) intra-entity facts that are important and diverse. We employ a constrained knapsack problem solving approach to efficiently compute entity summaries. We perform both qualitative and quantitative experiments and demonstrate that our approach yields promising results compared to two other stand-alone state-of-the-art entity summarization approaches.</p>","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":"2017 ","pages":"1060-1066"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644492/pdf/nihms911351.pdf","citationCount":"15","resultStr":"{\"title\":\"Relatedness-based Multi-Entity Summarization.\",\"authors\":\"Kalpa Gunaratna,&nbsp;Amir Hossein Yazdavar,&nbsp;Krishnaprasad Thirunarayan,&nbsp;Amit Sheth,&nbsp;Gong Cheng\",\"doi\":\"10.24963/ijcai.2017/147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Representing world knowledge in a machine processable format is important as entities and their descriptions have fueled tremendous growth in knowledge-rich information processing platforms, services, and systems. Prominent applications of knowledge graphs include search engines (e.g., Google Search and Microsoft Bing), email clients (e.g., Gmail), and intelligent personal assistants (e.g., Google Now, Amazon Echo, and Apple's Siri). In this paper, we present an approach that can summarize facts about a collection of entities by analyzing their relatedness in preference to summarizing each entity in isolation. Specifically, we generate informative entity summaries by selecting: (i) inter-entity facts that are similar and (ii) intra-entity facts that are important and diverse. We employ a constrained knapsack problem solving approach to efficiently compute entity summaries. We perform both qualitative and quantitative experiments and demonstrate that our approach yields promising results compared to two other stand-alone state-of-the-art entity summarization approaches.</p>\",\"PeriodicalId\":73334,\"journal\":{\"name\":\"IJCAI : proceedings of the conference\",\"volume\":\"2017 \",\"pages\":\"1060-1066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644492/pdf/nihms911351.pdf\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCAI : proceedings of the conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2017/147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2017/147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

以机器可处理的格式表示世界知识是很重要的,因为实体及其描述推动了知识丰富的信息处理平台、服务和系统的巨大增长。知识图谱的主要应用包括搜索引擎(如谷歌搜索和微软必应)、电子邮件客户端(如Gmail)和智能个人助理(如谷歌Now、亚马逊Echo和苹果Siri)。在本文中,我们提出了一种方法,可以通过分析实体的相关性来总结关于实体集合的事实,而不是孤立地总结每个实体。具体而言,我们通过选择:(i)相似的实体间事实和(ii)重要且多样化的实体内事实来生成信息丰富的实体摘要。我们采用一种约束背包问题求解方法来有效地计算实体摘要。我们进行了定性和定量实验,并证明与其他两种独立的最先进的实体总结方法相比,我们的方法产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Relatedness-based Multi-Entity Summarization.

Relatedness-based Multi-Entity Summarization.

Representing world knowledge in a machine processable format is important as entities and their descriptions have fueled tremendous growth in knowledge-rich information processing platforms, services, and systems. Prominent applications of knowledge graphs include search engines (e.g., Google Search and Microsoft Bing), email clients (e.g., Gmail), and intelligent personal assistants (e.g., Google Now, Amazon Echo, and Apple's Siri). In this paper, we present an approach that can summarize facts about a collection of entities by analyzing their relatedness in preference to summarizing each entity in isolation. Specifically, we generate informative entity summaries by selecting: (i) inter-entity facts that are similar and (ii) intra-entity facts that are important and diverse. We employ a constrained knapsack problem solving approach to efficiently compute entity summaries. We perform both qualitative and quantitative experiments and demonstrate that our approach yields promising results compared to two other stand-alone state-of-the-art entity summarization approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信