David J Vance, Jacqueline M Tremblay, Yinghui Rong, Siva Krishna Angalakurthi, David B Volkin, C Russell Middaugh, David D Weis, Charles B Shoemaker, Nicholas J Mantis
{"title":"蓖麻毒素酶和结合亚基上大量中和与非中和单域抗体的高分辨率表位定位。","authors":"David J Vance, Jacqueline M Tremblay, Yinghui Rong, Siva Krishna Angalakurthi, David B Volkin, C Russell Middaugh, David D Weis, Charles B Shoemaker, Nicholas J Mantis","doi":"10.1128/CVI.00236-17","DOIUrl":null,"url":null,"abstract":"<p><p>We previously produced a heavy-chain-only antibody (Ab) VH domain (V<sub>H</sub>H)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific V<sub>H</sub>Hs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the V<sub>H</sub>H-displayed phage library to additional \"pannings\" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique V<sub>H</sub>Hs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 V<sub>H</sub>Hs grouped into more than 20 different competition bins. The RTA-specific V<sub>H</sub>Hs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific V<sub>H</sub>Hs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717184/pdf/e00236-17.pdf","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin.\",\"authors\":\"David J Vance, Jacqueline M Tremblay, Yinghui Rong, Siva Krishna Angalakurthi, David B Volkin, C Russell Middaugh, David D Weis, Charles B Shoemaker, Nicholas J Mantis\",\"doi\":\"10.1128/CVI.00236-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We previously produced a heavy-chain-only antibody (Ab) VH domain (V<sub>H</sub>H)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific V<sub>H</sub>Hs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the V<sub>H</sub>H-displayed phage library to additional \\\"pannings\\\" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique V<sub>H</sub>Hs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 V<sub>H</sub>Hs grouped into more than 20 different competition bins. The RTA-specific V<sub>H</sub>Hs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific V<sub>H</sub>Hs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":\"24 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717184/pdf/e00236-17.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00236-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00236-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
我们以前曾从两只羊驼身上制备了一个只含重链抗体(Ab)VH 结构域(VHH)的噬菌体文库,这两只羊驼曾接受过蓖麻毒素类毒素以及蓖麻毒素 A 亚基(RTA)和蓖麻毒素 B 亚基(RTB)无毒混合物的免疫(D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, )。J. Vance、J. M. Tremblay、N. J. Mantis 和 C. B. Shoemaker,J Biol Chem 288:36538-36547,2013 年,https://doi.org/10.1074/jbc.M113.519207)。通过直接酶联免疫吸附试验 (ELISA) 对该文库进行初步和后续筛选,发现了二十多种独特的 RTA 和 RTB 特异性 VHHs,其中有 10 种 VHH 与 RTA 复合物的结构随后得到了解决。为了绘制更完整的蓖麻毒素抗原图,并确定与毒素中和活性相关的表位,我们对 VHH 显示的噬菌体文库进行了受体结合型蓖麻毒素和抗体捕获型蓖麻毒素的额外 "泛化"。现在,我们报告了 68 种独特 VHH 的全长 DNA 序列、结合亲和力和中和活性:其中 31 种针对 RTA,33 种针对 RTB,4 种针对蓖麻毒素全毒素。表位定位是通过使用一组单克隆抗体(MAbs)进行交叉竞争酶联免疫吸附试验(ELISA)实现的,并在某些情况下通过氢氘交换质谱法进行了验证。68 种 VHH 可分为 20 多个不同的竞争区。具有较强毒素中和活性的 RTA 特异性 VHH 被限制在与先前确定的两个中和热点(称为群组 I 和 II)重叠的群组中。四个 RTB 特异性 VHH 具有强大的毒素中和活性,它们分布在簇 II 附近的 RTA-RTB 界面上的三个相邻区域内。这些结果提供了有关蓖麻毒素表面表位相互关系的重要见解,并划定了可用于疫苗和疗法开发的薄弱区域。
High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin.
We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.