*癌症特征的K-means和聚类模型

Q1 Biochemistry, Genetics and Molecular Biology
Zura Kakushadze , Willie Yu
{"title":"*癌症特征的K-means和聚类模型","authors":"Zura Kakushadze ,&nbsp;Willie Yu","doi":"10.1016/j.bdq.2017.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in <span>https://ssrn.com/abstract=2802753</span><svg><path></path></svg> to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"13 ","pages":"Pages 7-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2017.07.001","citationCount":"35","resultStr":"{\"title\":\"*K-means and cluster models for cancer signatures\",\"authors\":\"Zura Kakushadze ,&nbsp;Willie Yu\",\"doi\":\"10.1016/j.bdq.2017.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in <span>https://ssrn.com/abstract=2802753</span><svg><path></path></svg> to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.</p></div>\",\"PeriodicalId\":38073,\"journal\":{\"name\":\"Biomolecular Detection and Quantification\",\"volume\":\"13 \",\"pages\":\"Pages 7-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bdq.2017.07.001\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Detection and Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214753517302061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753517302061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 35

摘要

将https://ssrn.com/abstract=2802753中应用的统计聚类方法扩展到定量金融中,给出了*K-means聚类算法和源代码。*K-means在不指定初始中心等情况下具有统计确定性。我们采用*K-means方法从基因组数据中提取癌症特征,而不使用非负矩阵分解(NMF)。*K-means的计算成本是NMF的一小部分。使用14种癌症类型的1389个已发表的样本,我们发现3种癌症(肝癌、肺癌和肾细胞癌)很突出,没有簇状结构。有两组癌症与其他11种癌症的群内相关性特别高,这表明它们有共同的潜在结构。我们的方法为研究这种结构开辟了一条新的途径。*K-means具有普适性,可应用于其他领域。我们讨论了量化金融的一些潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

*K-means and cluster models for cancer signatures

*K-means and cluster models for cancer signatures

*K-means and cluster models for cancer signatures

*K-means and cluster models for cancer signatures

We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular Detection and Quantification
Biomolecular Detection and Quantification Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信