Darren Abbanat, Todd A Davies, Karen Amsler, Wenping He, Kellen Fae, Sarah Janssen, Jan T Poolman, Germie P J M van den Dobbelsteen
{"title":"开发和鉴定嗜吞噬细胞杀伤试验,以评估生物结合大肠杆菌疫苗的免疫原性。","authors":"Darren Abbanat, Todd A Davies, Karen Amsler, Wenping He, Kellen Fae, Sarah Janssen, Jan T Poolman, Germie P J M van den Dobbelsteen","doi":"10.1128/CVI.00123-17","DOIUrl":null,"url":null,"abstract":"<p><p>The global burden of disease caused by extraintestinal pathogenic <i>Escherichia coli</i> (ExPEC) is increasing as the prevalence of multidrug-resistant strains rises. A multivalent ExPEC O-antigen bioconjugate vaccine could have a substantial impact in preventing bacteremia and urinary tract infections. Development of an ExPEC vaccine requires a readout to assess the functionality of antibodies. We developed an opsonophagocytic killing assay (OPA) for four ExPEC serotypes (serotypes O1A, O2, O6A, and O25B) based on methods established for pneumococcal conjugate vaccines. The performance of the assay was assessed with human serum by computing the precision, linearity, trueness, total error, working range, and specificity. Serotypes O1A and O6A met the acceptance criteria for precision (coefficient of variation for repeatability and intermediate precision, ≤50%), linearity (90% confidence interval of the slope of each strain, 0.80, 1.25), trueness (relative bias range, -30% to 30%), and total error (total error range, -65% to 183%) at five serum concentrations and serotypes O2 and O25B met the acceptance criteria at four concentrations (the lowest concentration for serotypes O2 and O25B did not meet the system suitability test of maximum killing of ≥85% of <i>E. coli</i> cells). All serotypes met the acceptance criteria for specificity (opsonization index value reductions of ≤20% for heterologous serum preadsorption and ≥70% for homologous serum preadsorption). The assay working range was defined on the basis of the lowest and highest concentrations at which the assay jointly fulfilled the target acceptance criteria for linearity, precision, and accuracy. An OPA suitable for multiple <i>E. coli</i> serotypes has been developed, qualified, and used to assess the immunogenicity of a 4-valent <i>E. coli</i> bioconjugate vaccine (ExPEC4V) administered to humans.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717180/pdf/e00123-17.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and Qualification of an Opsonophagocytic Killing Assay To Assess Immunogenicity of a Bioconjugated Escherichia coli Vaccine.\",\"authors\":\"Darren Abbanat, Todd A Davies, Karen Amsler, Wenping He, Kellen Fae, Sarah Janssen, Jan T Poolman, Germie P J M van den Dobbelsteen\",\"doi\":\"10.1128/CVI.00123-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global burden of disease caused by extraintestinal pathogenic <i>Escherichia coli</i> (ExPEC) is increasing as the prevalence of multidrug-resistant strains rises. A multivalent ExPEC O-antigen bioconjugate vaccine could have a substantial impact in preventing bacteremia and urinary tract infections. Development of an ExPEC vaccine requires a readout to assess the functionality of antibodies. We developed an opsonophagocytic killing assay (OPA) for four ExPEC serotypes (serotypes O1A, O2, O6A, and O25B) based on methods established for pneumococcal conjugate vaccines. The performance of the assay was assessed with human serum by computing the precision, linearity, trueness, total error, working range, and specificity. Serotypes O1A and O6A met the acceptance criteria for precision (coefficient of variation for repeatability and intermediate precision, ≤50%), linearity (90% confidence interval of the slope of each strain, 0.80, 1.25), trueness (relative bias range, -30% to 30%), and total error (total error range, -65% to 183%) at five serum concentrations and serotypes O2 and O25B met the acceptance criteria at four concentrations (the lowest concentration for serotypes O2 and O25B did not meet the system suitability test of maximum killing of ≥85% of <i>E. coli</i> cells). All serotypes met the acceptance criteria for specificity (opsonization index value reductions of ≤20% for heterologous serum preadsorption and ≥70% for homologous serum preadsorption). The assay working range was defined on the basis of the lowest and highest concentrations at which the assay jointly fulfilled the target acceptance criteria for linearity, precision, and accuracy. An OPA suitable for multiple <i>E. coli</i> serotypes has been developed, qualified, and used to assess the immunogenicity of a 4-valent <i>E. coli</i> bioconjugate vaccine (ExPEC4V) administered to humans.</p>\",\"PeriodicalId\":10271,\"journal\":{\"name\":\"Clinical and Vaccine Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717180/pdf/e00123-17.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Vaccine Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/CVI.00123-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00123-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Development and Qualification of an Opsonophagocytic Killing Assay To Assess Immunogenicity of a Bioconjugated Escherichia coli Vaccine.
The global burden of disease caused by extraintestinal pathogenic Escherichia coli (ExPEC) is increasing as the prevalence of multidrug-resistant strains rises. A multivalent ExPEC O-antigen bioconjugate vaccine could have a substantial impact in preventing bacteremia and urinary tract infections. Development of an ExPEC vaccine requires a readout to assess the functionality of antibodies. We developed an opsonophagocytic killing assay (OPA) for four ExPEC serotypes (serotypes O1A, O2, O6A, and O25B) based on methods established for pneumococcal conjugate vaccines. The performance of the assay was assessed with human serum by computing the precision, linearity, trueness, total error, working range, and specificity. Serotypes O1A and O6A met the acceptance criteria for precision (coefficient of variation for repeatability and intermediate precision, ≤50%), linearity (90% confidence interval of the slope of each strain, 0.80, 1.25), trueness (relative bias range, -30% to 30%), and total error (total error range, -65% to 183%) at five serum concentrations and serotypes O2 and O25B met the acceptance criteria at four concentrations (the lowest concentration for serotypes O2 and O25B did not meet the system suitability test of maximum killing of ≥85% of E. coli cells). All serotypes met the acceptance criteria for specificity (opsonization index value reductions of ≤20% for heterologous serum preadsorption and ≥70% for homologous serum preadsorption). The assay working range was defined on the basis of the lowest and highest concentrations at which the assay jointly fulfilled the target acceptance criteria for linearity, precision, and accuracy. An OPA suitable for multiple E. coli serotypes has been developed, qualified, and used to assess the immunogenicity of a 4-valent E. coli bioconjugate vaccine (ExPEC4V) administered to humans.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.