抑郁症在医学障碍的背景下:重新审视新的药理学途径。

Q1 Medicine
Neurosignals Pub Date : 2017-01-01 Epub Date: 2017-10-17 DOI:10.1159/000482001
Undine E Lang, Marc Walter
{"title":"抑郁症在医学障碍的背景下:重新审视新的药理学途径。","authors":"Undine E Lang,&nbsp;Marc Walter","doi":"10.1159/000482001","DOIUrl":null,"url":null,"abstract":"<p><p>The depressive state has been characterised as one of elevated inflammation, changed cardiovascular parameters and a deranged metabolic situation all of which holds promise for a better understanding and handling of treatment-resistance in affective disorders as well as for future developments in treatment algorithms. In this context several biomarkers are differentially regulated by antidepressant treatment and connected to metabolic, inflammatory, cardiovascular and apoptotic components of the pathophysiology, i.e. adiponectin, apolipoprotein-B, B-type natriuretic peptide, cortisol, CRP, cysteine, homocysteine, fibrinogen, adiponectin, BMI, glycated hemoglobin A1c, leptin, interferon-gamma, high-density lipoprotein, interleukin interleukin-1alpha, -1beta, -2, -4, -5, -6, -8, -10, -12, -13, -17, insulin-like growth factor-1, low-density lipoprotein, myeloperoxidase, osteoprotegerin, tumour necrosis factor alpha, troponins, triglycerides etc. In this context antidepressants exert different modulatory effects on the outcome, incidence and mortality concerning several severe disorders, i.e. cancer, diabetes, stroke, inflammation, stroke and cardiovascular risk. Vice versa different drugs used in the treatment of these disorders have a favourable effect in depressive states, e.g. statins, aspirine, NSAIDs, pioglitazone, celecoxib, peroxisome proliferator-activated receptor-gamma agonists and minocycline. In this review, actions of different antidepressant treatment strategies on cancer, stroke, diabetes and cardiovascular disorders are shown and the influence on the outcome of the disorders is differentially discussed. In conclusion a hypothetic model for the implication of actual findings in everyday clinical practice is proposed. In this context personalized treatment could be used to tailor treatment to specific individuals according to their clinical endophenotypes. Moreover a potential target for the development of novel intervention strategies might be used.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":"25 1","pages":"54-73"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000482001","citationCount":"6","resultStr":"{\"title\":\"Depression in the Context of Medical Disorders: New Pharmacological Pathways Revisited.\",\"authors\":\"Undine E Lang,&nbsp;Marc Walter\",\"doi\":\"10.1159/000482001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The depressive state has been characterised as one of elevated inflammation, changed cardiovascular parameters and a deranged metabolic situation all of which holds promise for a better understanding and handling of treatment-resistance in affective disorders as well as for future developments in treatment algorithms. In this context several biomarkers are differentially regulated by antidepressant treatment and connected to metabolic, inflammatory, cardiovascular and apoptotic components of the pathophysiology, i.e. adiponectin, apolipoprotein-B, B-type natriuretic peptide, cortisol, CRP, cysteine, homocysteine, fibrinogen, adiponectin, BMI, glycated hemoglobin A1c, leptin, interferon-gamma, high-density lipoprotein, interleukin interleukin-1alpha, -1beta, -2, -4, -5, -6, -8, -10, -12, -13, -17, insulin-like growth factor-1, low-density lipoprotein, myeloperoxidase, osteoprotegerin, tumour necrosis factor alpha, troponins, triglycerides etc. In this context antidepressants exert different modulatory effects on the outcome, incidence and mortality concerning several severe disorders, i.e. cancer, diabetes, stroke, inflammation, stroke and cardiovascular risk. Vice versa different drugs used in the treatment of these disorders have a favourable effect in depressive states, e.g. statins, aspirine, NSAIDs, pioglitazone, celecoxib, peroxisome proliferator-activated receptor-gamma agonists and minocycline. In this review, actions of different antidepressant treatment strategies on cancer, stroke, diabetes and cardiovascular disorders are shown and the influence on the outcome of the disorders is differentially discussed. In conclusion a hypothetic model for the implication of actual findings in everyday clinical practice is proposed. In this context personalized treatment could be used to tailor treatment to specific individuals according to their clinical endophenotypes. Moreover a potential target for the development of novel intervention strategies might be used.</p>\",\"PeriodicalId\":19171,\"journal\":{\"name\":\"Neurosignals\",\"volume\":\"25 1\",\"pages\":\"54-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000482001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurosignals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000482001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000482001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

摘要

抑郁状态的特征是炎症升高,心血管参数改变和代谢紊乱,所有这些都为更好地理解和处理情感障碍的治疗抵抗以及治疗算法的未来发展提供了希望。在这种情况下,几种生物标志物受到抗抑郁治疗的差异调节,并与病理生理的代谢、炎症、心血管和凋亡成分有关,即脂联素、载脂蛋白- b、b型利钠肽、皮质醇、CRP、半胱氨酸、同型半胱氨酸、纤维蛋白原、脂联素、BMI、糖化血红蛋白A1c、瘦素、干扰素- γ、高密度脂蛋白、白介素-1 α、-1 β、-2、-4、-5、-6、-8、-10、-12、-13、-17、胰岛素样生长因子-1、低密度脂蛋白、髓过氧化物酶、骨保护素、肿瘤坏死因子α、肌钙蛋白、甘油三酯等。在这种情况下,抗抑郁药对几种严重疾病(即癌症、糖尿病、中风、炎症、中风和心血管风险)的结局、发病率和死亡率发挥不同的调节作用。反之,用于治疗这些疾病的不同药物对抑郁状态有良好的效果,如他汀类药物、阿斯匹林、非甾体抗炎药、吡格列酮、塞来昔布、过氧化物酶体增殖激活受体-受体激动剂和米诺环素。在这篇综述中,不同的抗抑郁治疗策略对癌症、中风、糖尿病和心血管疾病的作用进行了展示,并对这些疾病的结果进行了不同的讨论。最后,我们提出了一个在日常临床实践中实际发现的假设模型。在这种情况下,个性化治疗可以根据他们的临床内表型来定制治疗。此外,可能会使用新的干预策略发展的潜在目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depression in the Context of Medical Disorders: New Pharmacological Pathways Revisited.

The depressive state has been characterised as one of elevated inflammation, changed cardiovascular parameters and a deranged metabolic situation all of which holds promise for a better understanding and handling of treatment-resistance in affective disorders as well as for future developments in treatment algorithms. In this context several biomarkers are differentially regulated by antidepressant treatment and connected to metabolic, inflammatory, cardiovascular and apoptotic components of the pathophysiology, i.e. adiponectin, apolipoprotein-B, B-type natriuretic peptide, cortisol, CRP, cysteine, homocysteine, fibrinogen, adiponectin, BMI, glycated hemoglobin A1c, leptin, interferon-gamma, high-density lipoprotein, interleukin interleukin-1alpha, -1beta, -2, -4, -5, -6, -8, -10, -12, -13, -17, insulin-like growth factor-1, low-density lipoprotein, myeloperoxidase, osteoprotegerin, tumour necrosis factor alpha, troponins, triglycerides etc. In this context antidepressants exert different modulatory effects on the outcome, incidence and mortality concerning several severe disorders, i.e. cancer, diabetes, stroke, inflammation, stroke and cardiovascular risk. Vice versa different drugs used in the treatment of these disorders have a favourable effect in depressive states, e.g. statins, aspirine, NSAIDs, pioglitazone, celecoxib, peroxisome proliferator-activated receptor-gamma agonists and minocycline. In this review, actions of different antidepressant treatment strategies on cancer, stroke, diabetes and cardiovascular disorders are shown and the influence on the outcome of the disorders is differentially discussed. In conclusion a hypothetic model for the implication of actual findings in everyday clinical practice is proposed. In this context personalized treatment could be used to tailor treatment to specific individuals according to their clinical endophenotypes. Moreover a potential target for the development of novel intervention strategies might be used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurosignals
Neurosignals 医学-神经科学
CiteScore
3.40
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信