{"title":"中心粒粘合素:分子胶和更多","authors":"Mihailo Mirkovic, Raquel A Oliveira","doi":"10.1007/978-3-319-58592-5_20","DOIUrl":null,"url":null,"abstract":"<p><p>Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as \"molecular glue\", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"485-513"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_20","citationCount":"17","resultStr":"{\"title\":\"Centromeric Cohesin: Molecular Glue and Much More.\",\"authors\":\"Mihailo Mirkovic, Raquel A Oliveira\",\"doi\":\"10.1007/978-3-319-58592-5_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as \\\"molecular glue\\\", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.</p>\",\"PeriodicalId\":20880,\"journal\":{\"name\":\"Progress in molecular and subcellular biology\",\"volume\":\"56 \",\"pages\":\"485-513\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_20\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular and subcellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-58592-5_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-58592-5_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 17
摘要
在有丝分裂过程中,由凝聚素复合体介导的姐妹染色单体内聚是染色体忠实分离的先决条件。姐妹染色单体内聚力的过早释放会导致遗传物质的随机分离,从而造成非整倍体。多种调控机制确保了内聚力建立的适当时机,与 DNA 复制同时进行,并在随后的有丝分裂过程中释放内聚力。在此,我们总结了内聚酶周期的最重要阶段,以及内聚酶释放与有丝分裂进程的协调。我们还进一步讨论了最近的证据,这些证据揭示了凝聚素中心定位在有丝分裂中的其他功能。除了作为 "分子胶水 "的公认作用外,中心粒粘合素复合物现在正在成为有丝分裂过程中多个基本过程的支架,包括形成正确的染色体和着丝点结构、与有丝分裂纺锤体的力平衡,以及与调控有丝分裂保真度的关键分子(尤其是染色体内中心粒)的结合。因此,中心粒染色质可被视为一个动态的场所,在这里,凝聚素通过多种方式确保有丝分裂的可靠性。
Centromeric Cohesin: Molecular Glue and Much More.
Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as "molecular glue", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.
期刊介绍:
Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.